
R package VGAMextra

by Victor Miranda
PhD Candidate, University of Auckland

Supervisor: Thomas Yee.

January 19, 2018

This document provides some examples and guidance of my package VGAMextra, for R.
It comprises additions and extensions of the package VGAM (Yee, 2015), with functions,
as well as S3/S4 methods addressing three main topics:

• Time series modelling. A novel class of VGLMs to model univariate time series,
called vector generalized linear time series models (VGLTSMs). It is characterized
by incorporating past information into the VGLM/VGAM loglikelihood. (Miranda
and Yee, Manuscript in preparation, 2018a) gives further details.

• 1–parameter distribution mean modelling. We return full circle by devel-
oping new link functions for the mean of 1–parameter distributions. VGAMs,
VGLMs and GAMLSSs are restricted to location, scale and shape. However, the
VGLM/VGAM framework has infrastructure to accommodate new links functions
as a function of the parameters. See Miranda and Yee (Manuscript in preparation,
2018b) for more information.

• Quantile modelling of 1–parameter distributions. Similarly, we have devel-
oped link functions to model the quantiles of several 1–parameter distributions.
Collectively, they represent an alternative to quantile regression by directly mod-
elling the quantile function for distributions beyond the exponential family This
framework is under development (Miranda and Yee, Manuscript in preparation,
2018c).

At present, this document shows examples on time series modelling, although it is re-
viewed and updated very often. Usage details on mean and quantile modelling will be
incorporated over time. Shortly, all this information will also be available through my
website, which is under construction.

For bugs and fixes, please email me at v.miranda@auckland.ac.nz

Note, my package depends on VGAM so make sure to install this firstly!

1

1 Vector generalized linear time series models

This section shows some examples of modelling choices for VGLTSMs. This sub–class
of VGLMs accommodates several family functions describing many time series models
as special cases.

1.1 AR(1) with ARCH(1) errors.

Chan et al. (2013) proposed a long and technical methodology to estimate the tail index
of an AR(1) with ARCH(1)–errors involving its estimation by QMLE, given by

Yt = Yt|Φt−1 = αYt−1 +
√
ω + β Y 2

t−1 εt, (1)

with εt
iid∼ N(0, 1); and α, ω > 0, β > 0 to be estimated.

A quick inspection reveals that the (conditional) variance equation is

σ2t|Φt−1
= Var(Yt|Φt−1) = ω + βY 2

t−1.

This allows to model (1) as a VGLM. with linear predictors

η1 = g1(µ
?) = µ?, (intercept–only)

η2 = g2(σ
2
t|Φt−1

) = σ2t|Φt−1
= ω + βY 2

t−1,

η3 = g3(α) = α, (intercept–only).

or, alternatively, η2 = g2(σ
2
t|Φt−1

) = log σ2t|Φt−1
, where the effect of Y 2

t−1 is constrained to

σ2t|Φt−1
(This is central).

The following code generates random observations from (1) and Figure 1.1 shows the
resulting time series.

> ## Vector generalized linear time series models.

> ## Package VGAMextra last update: 30/11/2017

>

> my.loc <- "~/phdvgam/myRlibs"

> library("VGAM", lib.loc = my.loc)

> library("VGAMextra", lib.loc = my.loc)

>

>

> ## Chan et.al. (2013). An ARCH(1, 1,). The variance equation

> ## parametrized in terms of lagged observations.

>

> # Generate some data

2

Time

S
er

ie
s

0 20 40 60 80 100 120

−
4

−
2

0
2

Figure 1.1. Simulated data from Model (1)

> set.seed(1)

> nn <- ceiling(runif(1, 150, 160))

> my.rho <- rhobit(-1.0, inverse = TRUE) # -0.46212

> my.mu <- 0.0

> my.omega <- 1

> my.b <- 0.5

> covdata <- data.frame(x2 = sort(runif(n = nn)))

> tsdata <- transform(covdata, index = 1:nn, TS1 = runif(nn))

>

> for (ii in 2:nn)

tsdata$TS1[ii] <- my.mu + my.rho * tsdata$TS1[ii-1] +

sqrt(my.omega + my.b * (tsdata$TS1[ii-1])^2) * rnorm(1)

> # Remove the burn-in data:

> nnr <- ceiling(nn/5)

> tsdata <- tsdata[-(1:nnr),]

> tsdata["index"] <- 1:(nn - nnr)

Model (1) can be seen as an AR(1) with ARCH(1) errors, such that either of the fam-
ily functions ARMA.GARCHff() or ARff() from my package, along with the modelling
function vglm() from VGAM, can be used to fit such structure straightforwardly.

Firstly, ARMA.GARCHff() imposes an ARMA(p, q) over the conditional mean, and as-
sumes an GARCH(r, s) model for the variance equation, with i.i.d innovations from the
standard Normal. The parameter vector comprises the coefficients involved with, both
the conditional mean and variance equations, plus the drift parameter (denoted µ?).

Thus, three linear predictors are involved with model (1): η = (µ?, σ2t|Φt−1
, α)T .

3

The statistical framework handled by ARMA.GARCHff() is

zt
iid∼ N(0, 1) (2)

εt|Φt−1
= zt · σ2εt|Φt−1

Yt|Φt−1 ∼ N(µt|Φt−1
, σ2εt|Φt−1

)

µt|Φt−1
= µ? + ϑTyt−u + φTεt−v

with zt independent of σ2εt|Φt−1
with choices (for σ2εt|Φt−1

) shown in Table 1.1.

Table 1.1. Conditional variance models (σ2
εt|Φt−1

) handled by (2) as special cases.

Model † § Conditional variance ‡

Linear ARCH (LARCH) σ2
εt|Φt−1

= ω +αTε2t−r

Generalized–ARCH (GARCH) σ2
εt|Φt−1

= ω +αTε2t−r + γTσ2
εt−s

Integrated–ARCH (IGARCH) σ2
εt|Φt−1

= ω +αTε2t−r + γTσ2
εt−s

Subject to
∑
r αr +

∑
s γs = 1.

Taylor–Schwert σεt|Φt−1
= ω +αT |εt−r|+ γTσεt−s

Asymmetric–GARCH (AGARCH) σ2
εt|Φt−1

= ω +αTε2t−r + ζTεt−r + γTσ2
εt−s

LogSD–GARCH (Log–GARCH) log σεt|Φt−1
= ω +αT |εt−r|+ γT logσεt−s

Multiplicative–GARCH (M-GARCH) log σ2
εt|Φt−1

= ω +αT log ε2t−r + γT logσ2
εt−s

† For all models, β(j)1 = 0, . . . , β(j)K = 0, j = 1, . . . ,M , that is, no covariates xt,(1) admitted.
§ The ARMA model on µt|Φt−1

is optional.
‡ εt−r denotes εt−r|Φt−1

and σεt−s denotes σεt−s|Φt−1
for simplicity.

The linear predictor handled by this family function is ηT = (µ?, σ2εt|Φt−1
,ϑT ,φT)T (in

this order), with parameter vector

θT = (µ?,αT , ζT ,γT ,ϑT ,φT)T .

On the other hand, ARff() models the AR process with zero–mean Normal innovations,
as follows:

εt|Φt−1 ∼ N(0, σ2εt|Φt−1
) (3)

Yt|Φt−1 ∼ N(µt|Φt−1
, σ2εt|Φt−1

)

µt|Φt−1
= µ? + ϑTyt−u

The linear predictor associated with ARff() is η = (µ?, σ2εt|Φt−1
,ϑT)T . Both family

functions manage covariates and multiple responses See Miranda and Yee (Manuscript
in preparation, 2018a) for further details.

4

Now, let’s go back to Model (1). Here are some notes:

• Our parameter vector is
θ = (µ?, ω, β, α)T ,

including coefficients from the variance equation, σ2t|Φt−1
= ω + βY 2

t−1, which
specifies one linear predictor.

• We have two linear predictors modelled as intercept–only: µ? and α, besides
log σ2t|Φt−1

= ω + βY 2
t−1.

• Most importantly, to fit model (1) constraining the effect of Y 2
t−1 over σ2t|Φt−1

,
a number of choices are available, outlined below:

1. Through my family function ARMA.GARCHff().
This is the easiest option. We just need to specify the ARMA order, the
GARCH order, and the model type of interest. ARMA.GARCHff() handles
several choices for the variance equation through the argument type.TS, e.g.,
ARCH, GARCH, Taylor-Schwert, etc., as per Table 2. Thus, to fit Model (1)
set type.TS = "ARCH", in addition, yielding:

> # Estimate the parameters.

> fit1 <-

vglm(TS1 ~ 1, ARMA.GARCHff(ARMAorder = c(1, 0), # ARMA order

GARCHorder = c(1, 0), # ARCH order

type.TS = "ARCH", # 'ARCH' type

type.param = "observed"),

crit = "loglikelihood", trace = TRUE, data = tsdata)

VGLM linear loop 1 : loglikelihood = -218.3519

VGLM linear loop 2 : loglikelihood = -218.08409

VGLM linear loop 3 : loglikelihood = -218.06373

VGLM linear loop 4 : loglikelihood = -218.06192

VGLM linear loop 5 : loglikelihood = -218.06175

VGLM linear loop 6 : loglikelihood = -218.06174

VGLM linear loop 7 : loglikelihood = -218.06173

Checks on stationarity / invertibility successfully performed.

No roots liying inside the unit circle.

Further details within the 'summary' output.

Some notes:

(a) type.TS specifies the model type. Choices are
"ARCH", "GARCH", "IGARCH", "Taylor-Schwert", "A-GARCH",

"Log-GARCH", "M-GARCH".

(b) type.param specifies the parametrization class for the variance equation.
In this example, Y 2

t−1 is “observed” data. Alternatively, type.param =

5

residuals ({εt}) is also available, employed for the usual parametriza-
tion.

(c) We maximize the log–likelihood (argument crit). See Yee (2015) for
more choices.

Furthermore, my family function ARMA.GARCH() internally checks whether the
fitted process, {Ŷt}, is stationary or invertible. A short output in this regard
is shown along with Fisher scoring iterations. In our example, all roots lie
outside the unit circle. Else, the fitted process may not comply with either
stationarity or invertibility conditions. Further details about estimates, se’s,
etc., are given along with the summary:

> summary(fit1)

Call:

vglm(formula = TS1 ~ 1, family = ARMA.GARCHff(ARMAorder = c(1,

0), GARCHorder = c(1, 0), type.TS = "ARCH", type.param = "observed"),

data = tsdata, crit = "loglikelihood", trace = TRUE)

Pearson residuals:

Min 1Q Median 3Q Max

drift1 -1.981 -0.353 -0.03165 0.358 1.52

noiseVar1 -0.707 -0.648 -0.37072 0.351 6.55

ARcoeff11 -1.965 -0.405 -0.00701 0.365 2.52

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 0.1518 0.1287 1.18 0.238

(Intercept):2 1.6356 0.2916 5.61 2.0e-08 ***

(Intercept):3 -0.4799 0.0862 -5.57 2.6e-08 ***

ARCH(1) 0.2603 0.1439 1.81 0.071 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of linear predictors: 3

Names of linear predictors: drift1, noiseVar1, ARcoeff11

Log-likelihood: -218.06 on 362 degrees of freedom

Number of iterations: 7

** Standard errors based on the asymptotic

distribution of the MLE estimates:

ARcoeff1 drift

-0.480 0.152

s.e. 0.078 0.199

6

Estimated linear predictor of sigma^2 (SD errors):

(Intercept) ARCH(1)

1.6356 0.2603

Loglikelihood: -218.062

AIC: 442.123, AICc: 442.327, BIC: 450.536

** Summary of checks on stationarity / invertibility:

Polynomial roots of the AR component computed from the estimated

coefficients: (Examining stationarity/invertibility)

Model1

Root1 2.084

Finally, the estimated coefficients:

> ## Estimated coefficients:

> ## True values 'drift = 0','(AR coeff) alpha = -0.46212',

> ## Variance equation -> ' (Intercept) omega = 1',

> ## '(TS1l1sq) beta = 0.5'

> coef(fit1, matrix = TRUE)

drift1 noiseVar1 ARcoeff11

(Intercept) 0.1518497 1.6356150 -0.4798513

ARCH(1) 0.0000000 0.2602659 0.0000000

2. Using constraint matrices

This option involves the use of constraint matrices, another functionality con-
ferred by the VGLM/VGAM framework. Here we just need some linear al-
gebra to end up with the two required matrices “modelling” µ? and α as
intercept–only:

η =

 µ?

σ2t−1
α

 =

 β(1)1
β(2)1 + β(2)2Y

2
t−1

β(3)1

 =

β(1)1β(2)1
β(3)1

+

 0
Y 2
t−1
0

 · β(2)1

=

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

H1

·

β(1)1β(2)1
β(3)1

+ (Y 2
t−1 · I3) ·

0
1
0


︸ ︷︷ ︸
H2

· β(2)2

(a) These matrices must be manually entered for several of the VGAM family
functions. ARMA.GARCH(), however, computes these matrices internally
on the basis of the desired model (GARCH, ARCH, etc.). Hence, to
fit (1), one sets the same model as in option 1!

7

> # Estimate the parameters.

> fit1bis <-

vglm(TS1 ~ 1, ARMA.GARCHff(ARMAorder = c(1, 0), # ARMA order

GARCHorder = c(1, 0), # ARCH order

type.TS = "ARCH",

type.param = "observed"),

crit = "loglikelihood", trace = TRUE, data = tsdata)

VGLM linear loop 1 : loglikelihood = -218.3519

VGLM linear loop 2 : loglikelihood = -218.08409

VGLM linear loop 3 : loglikelihood = -218.06373

VGLM linear loop 4 : loglikelihood = -218.06192

VGLM linear loop 5 : loglikelihood = -218.06175

VGLM linear loop 6 : loglikelihood = -218.06174

VGLM linear loop 7 : loglikelihood = -218.06173

Checks on stationarity / invertibility successfully performed.

No roots liying inside the unit circle.

Further details within the 'summary' output.

> fts.1 <- ts(fitted.values(fit1bis))

The (internally computed) constraint matrices:

> constraints(fit1bis)

$`(Intercept)`

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

$`ARCH(1)`

[,1]

[1,] 0

[2,] 1

[3,] 0

(b) Another option is my family function ARff(). Here, the constraint matri-
ces must be entered manually via an object of class list, with all elements
named accordingly. The R code is shown below.

This approach, however, implies a slight change wrt option 1. We must
incorporate Y 2

t−1 as an explanatory in the formula, which must be com-
puted firstly, and then constrain its effect over σ2εt|Φt−1

via the object
const.mat. Here, zero = NULL produces all linear predictors to be mod-
elled in terms of Y 2

t−1 (not intercept–only), but const.mat inhibits the
effect of Y 2

t−1 as desired. The code is:

> ## Constraint matrices

> (const.mat <- list('(Intercept)' = diag(3), 'TS1l1sq' = cbind(c(0, 1, 0))))

$`(Intercept)`

8

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

$TS1l1sq

[,1]

[1,] 0

[2,] 1

[3,] 0

> ## Set up the data using function WN.lags() from VGAMextra.

> tsdata2 <- transform(tsdata, TS1l1sq =

WN.lags(y = cbind(tsdata[, "TS1"])^2, lags = 1))

>

> ## Fitting the model

> fit2 <- vglm(TS1 ~ TS1l1sq, ARff(order = 1, # AR order

zero = NULL, noChecks = FALSE,

var.arg = TRUE, lvar = "identitylink"),

crit = "loglikelihood", trace = TRUE,

Constraints...

constraints = const.mat, data = tsdata2)

VGLM linear loop 1 : loglikelihood = -217.71018

VGLM linear loop 2 : loglikelihood = -216.35111

VGLM linear loop 3 : loglikelihood = -216.10699

VGLM linear loop 4 : loglikelihood = -216.07562

VGLM linear loop 5 : loglikelihood = -216.07187

VGLM linear loop 6 : loglikelihood = -216.07142

VGLM linear loop 7 : loglikelihood = -216.07137

VGLM linear loop 8 : loglikelihood = -216.07137

VGLM linear loop 9 : loglikelihood = -216.07137

Checks on stationarity / invertibility successfully performed.

No roots lying inside the unit circle.

Further details within the 'summary' output.

Finally, let’s check the constraint matrices and the estimated coefficients
(Similar results!):

> ## Estimated coefficients

> ## True values 'drift = 0','(AR coeff) alpha = -0.46212',

> # Variance equation -> ' (Intercept) omega = 1', '(TS1l1sq) beta = 0.5'

> coef(fit2, matrix = TRUE)

ARdrift1 noiseVar1 ARcoeff11

(Intercept) 0.1644261 1.243996 -0.5297543

TS1l1sq 0.0000000 0.372093 0.0000000

> constraints(fit2)

$`(Intercept)`

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

$TS1l1sq

[,1]

[1,] 0

[2,] 1

[3,] 0

9

3. Using the argument zero.
A third option comes up by using the argument zero, from the modelling
function vglm(). Argument zero is an object of class vector specifying the
names (then a vector of character strings) or positions (then an integer vector)
of those linear predictors to be modelled as intercept–only. For further
details, see the help documentation of CommonVGAMffArguments from VGAM.

Here, again, TS1l1sq must be entered as a covariate along with the formula.
Recall, the linear predictor is η = (µ?, σ2εt|Φt−1

, α)T . Then, the code to fit the
model under this approach is:

> # Fit the model

> fit2bis <- vglm(TS1 ~ TS1l1sq,

ARff(order = 1, lvar = "identitylink",

var.arg = TRUE, zero = c("drift", "coeff")),

crit = "loglikelihood", trace = TRUE, data = tsdata2)

VGLM linear loop 1 : loglikelihood = -217.71018

VGLM linear loop 2 : loglikelihood = -216.35111

VGLM linear loop 3 : loglikelihood = -216.10699

VGLM linear loop 4 : loglikelihood = -216.07562

VGLM linear loop 5 : loglikelihood = -216.07187

VGLM linear loop 6 : loglikelihood = -216.07142

VGLM linear loop 7 : loglikelihood = -216.07137

VGLM linear loop 8 : loglikelihood = -216.07137

VGLM linear loop 9 : loglikelihood = -216.07137

Checks on stationarity / invertibility successfully performed.

No roots lying inside the unit circle.

Further details within the 'summary' output.

Note,

(a) zero = c("drift", "coeff") indicates that the drift and the AR coef-
ficient are modelled as intercept–only. Hence, Y 2

t−1 affects σ2εt|Φt−1
exclu-

sively.

(b) lvar = "identitylink" enables the identity link to model σ2εt|Φt−1

(c) var.arg = TRUE allows to model the variance, σ2εt|Φt−1
, directly. If FALSE,

then σεt|Φt−1
is modelled instead.

Finally, the summary and estimated coefficients:

> summary(fit2bis)

Call:

vglm(formula = TS1 ~ TS1l1sq, family = ARff(order = 1, lvar = "identitylink",

var.arg = TRUE, zero = c("drift", "coeff")), data = tsdata2,

crit = "loglikelihood", trace = TRUE)

10

Pearson residuals:

Min 1Q Median 3Q Max

ARdrift1 -1.8937 -0.3511 -0.047568 0.3914 2.051

noiseVar1 -0.7067 -0.6498 -0.410287 0.4273 5.927

ARcoeff11 -1.8603 -0.3509 0.003344 0.3787 2.407

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 0.16443 0.12275 1.340 0.18040

(Intercept):2 1.24400 0.25167 4.943 7.70e-07 ***

(Intercept):3 -0.52975 0.09787 -5.413 6.21e-08 ***

TS1l1sq 0.37209 0.13290 2.800 0.00511 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of linear predictors: 3

Names of linear predictors: ARdrift1, noiseVar1, ARcoeff11

Log-likelihood: -216.0714 on 362 degrees of freedom

Number of iterations: 9

** Standard errors based on the asymptotic

distribution of the MLE estimates:

ARcoeff1 drift

-0.530 0.164

s.e. 0.081 0.212

Estimated linear predictor of sigma^2 (SD errors):

(Intercept) TS1l1sq

1.2440 0.3721

Loglikelihood: -216.071

AIC: 438.143, AICc: 438.346, BIC: 446.555

** Summary of checks on stationarity / invertibility:

Polynomial roots of the AR component computed from the estimated

coefficients: (Examining stationarity/invertibility)

Model1

Root1 1.888

> ############# Estimated coefficients #################

> ## True values 'drift = 0','(AR coeff) alpha = -0.46212',

> # Variance equation -> ' (Intercept) omega = 1', '(TS1l1sq) beta = 0.5'

11

> coef(fit2bis, matrix=TRUE)

ARdrift1 noiseVar1 ARcoeff11

(Intercept) 0.1644261 1.243996 -0.5297543

TS1l1sq 0.0000000 0.372093 0.0000000

1.2 Time series of counts

This section shows (briefly) the performance of another family function in my package:
VGLM.INGARCHff(), for time series of counts.

Time

C
am

py
lo

ba
ct

er
os

is
 c

as
es

1990 1992 1994 1996 1998 2000

0

10

20

30

40

50

60

84

100

113

133

Figure 1.2. Number of campylobacterosis infections in Northern Québec reported every 28 days.

Here, we analyze the number of campylobacterosis infections in Northern Québec, Canada,
reported every 28 days between January 1990 and October 2010. Compared to this,
results from packages tscount, gamlss, and glarma, are also presented. The series is
displayed in Figure 1.2, and can be retrieved from package tscount.

In particular, Fokianos and Fried (2010), Fokianos and Fried (2012), Liboschik et al.
(2016a), and Liboschik et al. (2016b) present a compendium of intervention analysis
techniques using this set of data, but restricted to the Poisson and negative binomial
distributions (with mean response λt|Φt−1

), and investigate INGARCH models with single
intervention effects only. For this dataset, they propose a conservative approach to
predict the average change in rate of campylobacter infections over (yearly) seasonal
effects (i.e., regressing on λt−13), plus short–term distributed impacts from the last
reported period (accounting for serial dependence), and no intervention effects. The
linear predictor has the following form:

log λt|Φt−1
= ω + ϑ1yt−1 + φ1λt−13|Φt−14

. (4)

12

Time

C
am

py
lo

ba
ct

er
 In

fe
ct

io
ns

1990 1992 1994 1996 1998 2000

0

10

20

30

40

50

60
a

'VGAMextra'
'tscount'
'glarma'
'gamlss'

Time

C
am

py
lo

ba
ct

er
 In

fe
ct

io
ns

1990 1992 1994 1996 1998 2000

0

10

20

30

40

50

60
b

'VGAMextra'
'tscount'
glarma
'gamlss'

Figure 1.3. Campylobacterosis infections: Fitted values based on Model (4) assuming (a) Poisson
and (b) negative binomial response. No intervention effects.

Imposing Poisson and negative binomial distributions on the response, Figure 1.3 shows
the predicted values after fitting model (4) using packages VGAMextra, tscount, glarma,
and gamlss. Figure 1.4 presents the PIT histrograms computed with PIT() from my
package, VGAMextra. PITs show evidence that the negative binomial produces more
accurate predictions.

Later, the authors incorporated intervention analysis, identifying intervention–influence
at times t84 and t100. They utilized the order–(p, q) INGARCH–class to explore this
series, but including single–intervention only (See Liboschik et al. (2016a), Section 6).
The INGARCH linear predictor with ‘s’ types of interventions with decay rates δ1, . . . , δs
(known and fixed) occurring at points τ1, . . . , τs is

g(λt) = β0 +

p∑
k=1

βkg̃(Yt−ik) +

q∑
l=1

αlg(λt−jl) +

s∑
i=1

ωmδ
t−τm1(t ≥ τm),

where ωm, m = 1, . . . , s are the intervention sizes.

13

Poisson

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0
a

Neg. binomial

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0
b

Figure 1.4. PIT histograms build on Model (4), computed with PIT() from VGAMextra, assuming
(a) Poisson and (b) negative binomial distributions.

Compared to this, we illustrate the impact of joint–intervention effects on the series by
incorporating interaction terms. Specifically, two influential observations at the bottom
of the series have been selected, t113, and t133, around years 1998–2000 (See Figure 1.2).
Also, the series may be negatively affected for both “shocks”, with possibly singular
effects at t133 (hence δ4 = 0). However, the shock t113 lies further in the vicinity of t100
and reasonably around t84, and may collectively influence the series with exponential
consequences. As a result, we set a conservative δ3 = 0.5. In addition, we slightly
relax the permanent effect at t84, identified by Fokianos and Fried (2010); Liboschik
et al. (2016a) (the singular effect at t100 remains), resulting in δ = (0.99, 0, 0.5, 0)T and
τ = (84, 100, 113, 133)T , and hence the following linear predictor

log λt|Φt−1
= ω + ϑ1yt−1 + φ1λt−13|Φt−14

+

4∑
h=1

ωh · δt−τhh 1(t ≥ τh) + (5)

ω5 · δt−τ11 1(t ≥ τ1) · δt−τ33 1(t ≥ τ3).

This structure can only be handled by the modelling function vglm() using my fam-
ily function VGLM.INGARCHff(). Figure 1.5 shows the fitted values with and without
interactions terms, involving intervention analysis.

Finally, in addition to Poisson and negative binomial, the logarithmic and the Yule–
Simon distributions are also handled by my family function VGLM.INGARCHff().

14

Time

1990 1992 1994 1996 1998 2000

0

10

20

30

40

50

60 'VGAMextra' WITH−interaction
'VGAMextra' NO−interaction
'tscount' NO−interaction

Figure 1.5. Fitted values from intervention effects model (5), compared with tscount (This
package does not handle no joint–interventions).

The VGLM/VGAM framework is also able to handle (further examples soon).

• Cointegrated (bi–dimensional) time series

• Multivariate time series.

• Later, I will upgrade my framework on time series to handle VGAMs.

• Forecasting S4 methods are still under development.

15

2 On modelling the mean of 1–parameter distributions

We also have developed new links for the mean–function of several 1–parameter discrete
and continuous distributions. These are presented in Tables 2.1 and 2.2.

Distribution θ Range of θ Support Mean µ Link function [η(θ)]

Borel–Tanner a (0, 1) Q(1)∞ Q/(1− θ) loge
(
Q−1 − θQ−1

)
Geometric p (0, 1) 0(1)∞ (1− θ)/θ −logit(θ)

Logarithmic s ‡ (0, 1) 1(1)∞ θ

(1− θ) [− log(1− θ)] logit(θ)− cloglog(θ)

Positive Poisson λ (0,∞) 1(1)∞ θ

1− e−θ −loge
(
θ−1 − θ−1e−θ

)
Yule–Simon ρ ‡ (0,∞) 1(1)∞ θ

θ − 1
, θ > 1 −loge

(
1− θ−1)

zeta (Zipf) s ‡ (0,∞)† 1(1)∞ ζ(θ)/ζ(θ + 1), θ > 1 loge [ζ(θ)/ζ(θ + 1)]

† The density and the moments of the Zipf distribution here conforms with the family function
zetaff at package VGAM. Particularly, ζ is the Riemman Zeta function.
‡ These are ‘shape’ parameters.

Table 2.1. New links for the mean–function of some discrete distributions

Distribution θ Range of θ Support Mean µ Link function [η(θ)]

Exponential † λ (0,∞) (A,∞) A+ θ−1 loge
(
A+ θ−1

)
Gamma ‡ s (0,∞) (0,∞) θ loge(θ)

Inverse–χ2 df [0,∞) (0,∞)
1

θ − 2
, θ > 2 −loge(θ − 2)

Maxwell § a (0,∞) (0,∞) a−1/2

√
8

π
κ1 −

1

2
loge(θ)

Rayleigh ‖‡ b (0,∞) (0,∞) b
Γ (0.5)√

2
loge(θ) + κ2

Topp–Leone] s (0, 1) (0, 1) 1− 4θΓ (1 + θ)2

Γ (2 + 2θ)
logit (µ(θ)/κ3)

†A is a location parameter (fixed) and λ is a rate.
‡ No link functions required. The default link in VGAM accommodates this.
§ κ1 = 3

2
log 2− logΓ (0.5), where Γ denotes the gamma function.

‖ κ2 = logΓ (0.5)− 1
2

log 2.
] κ3 = sup0<θ<1

{
1− 4θΓ (1+θ)2

Γ (2+2θ)

}
Table 2.2. New links for the mean–function of some continuous distributions

16

2.1 An example

To illustrate how such mean–links operate, I will focus on the logarithmic distribution
with unique parameter θ ∈ (0, 1). The mean, as a function of θ, is

− θ

(1− θ) log(1− θ)
. (6)

As a general approach in this subject, we take the logarithm of (6), producing the
following interesting difference, and hence, specifying the new link function (called
logffMeanlink(·):

logffMeanlink(θ) = logit(θ)− cloglog(θ). (7)

The mean–link, or more precisely, our linear predictor (as a function of θ) for a set of
covariates x, is then given by

η(θ) = logffMeanlink(θ) = βTx.

To accommodate new links, the VGLM/VGAM framework requires, among others,
smootheness (we must be able to compute the inverse, at least numerically), and the
derivatives ∂η/∂θ and ∂θ/∂η as a function of θ (See Yee (2015) for further details).
Particularly, I have implemented (7) in my package, via the function logffMeanlink().
Figure 2.1 shows this link plotted over (0, 1), and is compared to other popular proba-
bility links.

Figure 2.1. Some probability link functions

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4

theta

tr
an

sf
or

m
at

io
n

logffMeanlink
logit
probit
cloglog
cauchit

17

The following code shows logffMeanlink() in action while fitting a VGLM, with one
covariate, X2, yielding

η(θ) = logit(θ)− cloglog(θ) = β1 + β2X2. (8)

> nn <- 120

> # Reference: logffMeanlink(theta = 1, inverse = TRUE) ~ 0.8263

> set.seed(2)

> log.data <- data.frame(X2 = runif(nn, 0, 1))

> log.data <- transform(log.data,

y = rlog(nn, shape = logffMeanlink(theta = 1 + 1 * X2,

inverse = TRUE)))

> head(log.data)

X2 y

1 0.1848823 1

2 0.7023740 1

3 0.5733263 25

4 0.1680519 7

5 0.9438393 1

6 0.9434750 8

> ## logffMeanlink(theta) = logit(theta) - cloglog(theta)

>

> ## fit the vglm

> fit4 <- vglm(y ~ X2, family = logff(lshape = logffMeanlink, zero = NULL),

data = log.data, trace = TRUE)

VGLM linear loop 1 : loglikelihood = -270.77373

VGLM linear loop 2 : loglikelihood = -270.72577

VGLM linear loop 3 : loglikelihood = -270.72575

VGLM linear loop 4 : loglikelihood = -270.72575

> ## Estimated coefficients. True is beta0 = beta1 = 1.

> coef(fit4, matrix = TRUE)

logfflink(shape)

(Intercept) 1.0728599

X2 0.9138094

If we have no covariates involved (intercept–only model, hence η(θ) = β1), our estimate
would be obtained by applying the inverse of logffMeanlink(), i.e.,

α̂ = logffMeanlink−1(β̂1.)

The R code would be:

18

> # An intercept only model.

> fit4.bis <- vglm(y ~ 1, family = logff(lshape = logffMeanlink, zero = NULL),

data = log.data, trace = TRUE)

VGLM linear loop 1 : loglikelihood = -273.18342

VGLM linear loop 2 : loglikelihood = -273.18342

> # Our estimate: (True is 1.0)

> logffMeanlink(coef(fit4.bis), inverse = TRUE)

[1] 0.9254939

Finally, Figure 2.2 shows the fitted values.

Figure 2.2. Fitted values from (8).

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

X2

y

19

3 On quantile modelling

Quantile regression has been exceedingly addressed in the literature with methodologies
relying on optimizing variants of many target functions (e.g., minimizing the absolute
error functions) with no overriding framework.

I propose an alternative to quantile regresssion by directly modelling any set of 100p%
quantiles via VGLM/VGAM quantile–links, currently encompassing several 1–parameter
distributions. At a later stage, we will extend this work to distributions with P param-
eters.

In this document I will restrict myself to one example: The Maxwell distribution (for
simplicity) with rate parameter θ. Hopefully, this example will provide suffice grounds
for users to address their own models. Further details/information will be incorporated
over time.

My proposed quantile–link for the p% quantile of the Maxwell distribution is specified
by the corresponding linear predictor:

η(θ; p) =
1

2
log 2 + log qgamma(p, 1.5)− 1

2
log θ,

called maxwellQlink. This and other quantile–links have been implemented in R, and
are available in my package. In particular, η(θ; p) above is available through the function
maxwellQlink().

The following code generates random data distributed as Maxwell, where its rate is
modelled as

rate = exp
[
2− 6 ∗ sin(2x2 − 0.2)/(x2 + 0.5)2

]
,

for a random covariate x2. Next, we use splines to fit a VGAM, incorporating our
quantile modelling function. Here, we are interested on modelling the 25%, 50% and
75%.

> set.seed(123)

>

> # An artificial covariate.

> maxdata <- data.frame(x2 = sort(runif(n <- nn)))

> # The 'rate' function.

> mymu <- function(x) exp(2 - 6 * sin(2 * x - 0.2) / (x + 0.5)^2)

> # Set up the data.

> maxdata <- transform(maxdata, y = rmaxwell(n, rate = mymu(x2)))

>

> # 25%, 50% amd 75% quantiles are to be modelled.

> mytau <- c(0.25, 0.50, 0.75)

> mydof <- 4

>

> # Use VGAM to fit the data.

> fit <- vgam(Q.reg(y, pvector = mytau) ~ bs(x2, df = mydof),

family = maxwell(link = maxwellQlink(p = mytau), zero = NULL),

20

o o
o
oo

o
o
o

o

oo o

o
o

o
o

o
o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Example 1; green: parallel.locat = TRUE

x2

y

percentile25
percentile50
percentile75

data = maxdata, trace = TRUE, eps = 1e-4)

VGAM vlm.wfit loop 1 : loglikelihood = -833.99

VGAM vlm.wfit loop 2 : loglikelihood = -528.28

VGAM vlm.wfit loop 3 : loglikelihood = -514.6

VGAM vlm.wfit loop 4 : loglikelihood = -514.53

VGAM vlm.wfit loop 5 : loglikelihood = -514.53

Some notes:

• Q.reg(), from my package, must be included in the formula. Here, pvector is a
numeric vector containing the quantiles to be modelled (entries between 0 and 1).

• bs() are usual B–spline basis, from package splines.

• maxwell() is the VGAM family function that estimates the parameter of the
Maxwell distribution (by MLE using Fisher scoring).

Finally, let’s check the percentage of data below the 25%, 50% and 75% curves.

> # Below the 25% quantile

> round(length(predict(fit)[, 1][(maxdata$y

<= predict(fit)[, 1])]) /nn, 3) * 100

[1] 24.2

> # Below the 50% quantile

> round(length(predict(fit)[, 2][(maxdata$y

<= predict(fit)[, 2])]) /nn, 3) * 100

21

[1] 50.8

> # Below the 75% quantile.

> round(length(predict(fit)[, 3][(maxdata$y

<= predict(fit)[, 3])]) /nn, 3) * 100

[1] 77.5

Further options, choices and details are to be incorporated over time, or via a couple of
papers in preparation. See the references.

Package VGAMextra tested okay on R version 3.4.3.
Document continuously updated...

Victor Miranda
Last update: January 19, 2018.

22

References

N. Chan, D. Li, L. Peng, and R. Zhang. Tail index of an AR(1) model with ARCH(1)
errors. Econometric Theory, 29(5):920–940, 2013.

W. Diethelm, many others, and see the SOURCE file. fArma: ARMA time series
modelling, 2013a. R package version 3010.79.

W. Diethelm, C. Yohan, M. Michal, B. Chris, C. Pierre, et al. fGarch: Rmetrics – Au-
toregressive Conditional Heteroskedastic Modelling, 2013b. R package version 3010.82.

K. Fokianos. Some recent progress in count time series. Statistics, 45:49–58, 2011.

K. Fokianos and R. Fried. Interventions in INGARCH process. Journal of Time Series
Analysis, 31(3):210–225, 2010.

K. Fokianos and R. Fried. Interventions in log–linear Poisson autoregression. Statistical
Modelling, 12(4):299–322, 2012.

K. Fokianos and D. Tjostheim. Log–linear Poisson autoregression. Journal of Multivari-
ate Analysis, 102(3):563–578, 2011.

T. Liboschik, K. Fokianos, and R. Fried. tscount: An R package for analysis of count
time series following generalized linear models. To appear in Journal of Statistical
Software, 2016a.

T. Liboschik, P. Keischke, K. Fokianos, and R. Fried. Modelling interventions in IN-
GARCH processes. International Journal of Computer Mathematics, 93(4):640–657,
2016b.

V. Miranda and T. Yee. Vector generalized linear time series models. Manuscript in
preparation, 2018a.

V. Miranda and T. Yee. On mean modelling of 1–parameter distributions using VGLMs.
Manuscript in preparation, 2018b.

V. Miranda and T. Yee. Vector generalized linear and additive models towards quantile
modelling: A general framework for quantile regression. Manuscript in preparation,
2018c.

B. Pfaff. Analysis of integrated and cointegrated time series with R. Springer, Seattle,
Washington, USA, 2011.

R Core Team. R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria, 2017. URL https://www.R-project.

org/.

R. Rigby and D. Stasinopouls. Generalized additive models for location, scale and shape,
(with discussion). Applied Statistics, 54(3):507–554, 2005.

23

G. Sucarrat. lgarch: simulation and estimation of Log-GARCH models, 2015. R package
version 0.6-2.

T. Yee. Vector generalized linear and additive models with an implementation in R.
Springer, New York, USA, 2015.

24

