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CHAPTER 4

Probability

While the graphical and numerical methods of Chapters 2 and 3 provide us
with tools for summarizing data, probability theory, the subject of this chapter,
provides a foundation for developing statistical theory. Most people have an
intuitive feeling for probability, but care is needed as intuition can lead you
astray if it does not have a sure foundation.

After talking about the meaning of events and probability we introduce a
number of rules for calculating probabilities. Important ideas that we develop
are conditional probability and the concept of independent events. We will
exploit two aids in developing these ideas. The first is the two-way table of
counts or proportions which enables us to understand in a simple way how
many probabilities encountered in real-life are computed. The second is the
tree diagram. This is often useful in clarifying our thinking about sequences
of events. A number of case studies will highlight some practical features of
probability and its possible pitfalls.

4.1 Introduction
“If I toss a coin, what is the probability that it will turn up heads?” It’s a

rather silly question isn’t it? Everyone knows the answer, namely “a half” or
“one chance in two” or “fifty-fifty”. But let us look a bit more deeply behind
this response that everyone makes.

2020

Univers i t y
o f A u c k land N e w

Z
ea

la

nd



2 Probability

Firstly, why is the probability one half? When you ask a class, a dialogue
like the following often develops. “The probability is one half because the coin
is equally likely to come down heads or tails.” Well, it could conceivably land
on its edge but we can fix that by tossing again. So why are the two outcomes
“heads” and “tails” equally likely? “Because it’s a fair coin.” Sounds like
somebody had taken statistics before, but that’s just jargon isn’t it. What
does it mean? “Well it’s symmetrical.” Have you ever seen a symmetrical coin?
They are always different on both sides with different bumps and indentations.
These might influence the chances that the coin comes down heads. How
could we investigate this? “We could toss the coin lots of times and see what
happens.” This leads us to an intuitively attractive approach to probabilities
for repeatable “experiments” such as coin tossing or die rolling: probabilities
are described in terms of long run relative frequencies from repeated trials.
Assuming these relative frequencies become stable after a large enough number
of trials, the probability could be defined as the limiting relative frequency. Well
it turns out that several people have tried this.
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Figure 4.1.1 : Proportion of heads versus number of tosses
for John Kerrich’s coin tossing experiment.

English mathematician John Kerrich was lecturing at the University of Copen-
hagen when World War II broke out. He was arrested by the Germans and
spent the war interned in a camp in Jutland. To help pass the time he per-
formed some experiments in probability. One of these involved tossing a coin
ten thousand times and recording the results.1 Fig. 4.1.1 graphs the propor-
tion of heads Kerrich obtained up to and including toss numbers 10, 20, . . . , 100,
200, . . . , 900, 1, 000, 2, 000, . . . , 9, 000, 10, 000. The data is given in Freedman
et al. [1991, Table 1, p. 248].

For the coin Kerrich was using, the proportion of heads certainly seems to be
settling close to 1

2 . This is an empirical or experimental approach to probability.

1John Kerrich hasn’t been the only person with time on his hands. In the eighteenth century,

French naturalist Comte de Buffon performed 4, 040 tosses for 2, 048 heads while around 1900,
Karl Pearson one of the pioneers of modern statistics, made 24, 000 tosses for 12, 012 heads.
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We never know the exact probability this way, but we can get a pretty good
estimate. Kerrich’s data gives us an example of the frequently observed fact
that in a long sequence of independent repetitions of a random phenomenon,
the proportion of times in which an outcome occurs gets closer and closer to a
fixed number which we can call the probability that the outcome occurs. This
is the relative frequency definition of probability. The long run predictability of
relative frequencies follows from a mathematical result called the Law of Large
Numbers.

But let’s not abandon the first approach via symmetry quite so soon. The
answer it gave us agreed well with Kerrich’s experiment. It was based upon
an artificial idealization of reality – what we have called a model . The coin is
imagined as being completely symmetrical so that there should be no preference
for landing heads or tails. Each should occur half the time. However, no coin is
exactly symmetrical nor, in all likelihood, has a probability of landing heads of
exactly 1

2 . Yet experience has told us that the answer the model gives is close
enough for all practical purposes. Although real coins are not symmetrical,
they are close enough to being symmetrical for the model to work well.

4.2 Coin Tossing and Probability Models
At a University of London seminar series, NZ statistician Brian Dawkins

asked the very question we used to open this discussion. He then left the stage
and came back with an enormous coin, almost as big as himself.
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The best he could manage was a single half turn. There was no element of
chance at all. Some people can even make the tossing of an ordinary coin
predictable. Program 15 of the Against All Odds video series (COMAP[1989])
shows Harvard probabilist Persi Diaconis tossing a fair coin so that it lands
heads every time.2 It is largely a matter of being able to repeat the same
action. By just trying to make the action very similar we could probably shift
the chances from 50 : 50 but most of us don’t have that degree of interest or
muscular control. A model in which coins turn up heads half the time and
tails the other half in a totally unpredictable order is an excellent description
of what we see when we toss a coin. Our physical model of a symmetrical
coin gives rise to a probability model for the experiment. A probability model
has two essential components: the sample space, which is simply a list of all

2Diaconis was a performing magician before training as a mathematician.
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the outcomes the experiment can have, and a list of probabilities, where each
“probability” is intended to be the probability that the corresponding outcome
occurs (see Section 4.4.4).

In sport, coins are tossed to decide which end of the ground a team is to
defend, or who is going to go into bat first. It is quite common to call the
outcome after the coin has been tossed, but before it has fallen. Even with a
normal coin, the side that it lands on is virtually completely determined by a
number of factors such as which way up it started, the degree of spin, the speed
and angle with which it left the thumb and how far it has to fall. If we knew
all this, then, with sufficient expertise in physics, we could write down some
equations which are thought to govern the motion of the coin (a mathematical
model like Newton’s laws) and use these to work out which way up the coin
should land. The mathematical model will give us precise predictions but it has
some drawbacks. It will be complicated and it will require us to have some way
of accurately measuring quantities such as speeds and angles. Our probability
model, on the other hand, is simple and requires no such information. But we
pay for this by not being able to predict specific occurrences (e.g. whether this
toss will result in a head). We also need to assume that the various physical
factors, like those mentioned above, vary in an unpredictable fashion.

Probability models can only talk about average behavior in the long run. In a
very long sequence of coin tosses we will see very nearly the same proportions (or
relative frequencies) of heads and tails. This is an example of what is popularly
referred to as the “law of averages”3. Many misconceptions have developed
around the idea of the “law of averages”. Even though the proportion (relative
frequency) of heads becomes more and more stable as the number of tosses
increases, inspection of Kerrich’s data in Freedman et al. [1991, p. 248] reveals
that the difference between the actual numbers of heads and tails becomes more
and more variable. The law of averages applies to relative frequencies, not to
absolute numbers. Many people believe that after a sequence of 10 straight
heads the chances of getting a tail is much bigger than 50% “because the law
of averages will be trying to even things up.” The law of averages says nothing
at all about short run behavior. If you inspect very long sequences of coin
tosses, find all instances of 10 heads in a row and then look at what happens
next each time, you will find that the next toss is still a tail about half of
the time and a head about half of the time. Short term behavior is utterly
unpredictable. And, of course, these are precisely the reasons coins are used to
start sports games – the results are “fair” but unpredictable.4

Let us return to our mathematical model for coin tossing. Even if we could
make all the measurements required by a mathematical model of coin tossing,
it is unlikely that it would always give us the correct answers. There would be
factors affecting the experiment that we had not allowed for. For example, a

3This “law” is the popular version of the technical Law of Large Numbers discussed in the

alternate version of Chapter 5 given on the web site.
4For a more detailed exposition of these ideas, see Freedman et al. [1991, Chapter 6] and
Moore [1991, pages 331-339].
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gust of wind or slight variations in the degree of bounce in the table could still
render our answer wrong some of the time. Furthermore, measurements can
never be made completely accurately. Measurement errors are often random
in appearance and may be large enough to adversely affect the answers. In
building probability models for real world situations we need to model both
the predictable factors that we know about using mathematics, and the un-
predictable factors, using probability. Some of the unpredictable factors may
or may not actually be random. This does not matter. The important thing
is that they are unpredictable to us and look random. We therefore describe
these unpredictable elements in terms of random events with associated proba-
bilities. A model which consists of a predictable (“deterministic”) part and an
unpredictable (“stochastic”) part is typically used when we fit a straight line
to data. We model the predictable part, the pattern or trend, by a straight
line, and we model the unpredictable part, namely the variation of the points
about the line, using ideas of randomness and probability. This more complex
type of model is discussed later in Chapter 12. In the meantime, however, we
shall confine ourselves to very simple situations.

Another two-outcome probability model

The gender of a child is a two-outcome “experiment” whose outcome still
appears to be random. With current scientific knowledge it is still impossible
to control the sex of the conceived child. This is despite Aristotle’s belief that
boys tend to be produced if the father is highly excited and other venerable
solutions such as waiting until the wind is in the north, keeping one’s boots on,
and eating raw eggs. To the best of our knowledge, none of them work reliably!
Conception can be viewed as a race. The winner is the first sperm to reach
the egg and still have enough energy to penetrate its wall. Does it carry an X
chromosome resulting in a girl, or carry a Y , giving a boy? Looking around,
and seeing roughly equal numbers of males and females we may decide that it
is just like tossing a coin. Thus we could use the same probability model, but
with boys and girls replacing heads and tails. The set of possible outcomes
is {boy, girl} and each outcome has a probability of a 1

2 . This model works
reasonably well but it has deficiencies. In most countries the birth rate for boys
is slightly higher than that for girls. In NZ, for example, roughly 52% of births
are boys.

Another deficiency in the analogy between tossing coins and having children
becomes apparent when we come to have the second child. The chances of
getting a girl should be the same whether or not the first child was a girl (after
all, the coin doesn’t know whether it came down heads or tails last time). This
idea is called independence. However there is some evidence that people whose
first child is a girl or a boy have a second child of the same sex slightly more
frequently than one of the opposite sex. Having made these points, however,
we note that the deficiencies of the coin tossing model as a description of child’s
gender order in families are slight and that probabilities from the coin tossing
model are accurate enough for almost all practical purposes.



6 Probability

Quiz on Section 4.2
1. What does the law of averages say about the behavior of coin tosses?

2. What are two widely held misconceptions about what the law of averages says about coin

tosses?

3. Describe two ways in which the coin tossing model is inadequate for describing the gender

order of children in families. Are the deficiencies big enough to be important?

4.3 Where do Probabilities come from?
In the previous section, we stated that a probability model had two essential

components, the sample space which is a list of all the possible outcomes our
experiment can have, and a list of probabilities, one for each outcome. But
where do the probabilities that we meet in everyday life come from? We have
seen some examples in the previous section. Here is another one.

In 1977 a PanAm jumbo jet and a KLM jumbo jet collided on an airport
runway in the Canary Islands. One jet was taxiing after landing while the other
was taking off. Five hundred and eighty one lives were lost. Soon after, well-
known Australian statistician, Terry Speed, noticed the following wire service
report in The West Australian.

“NEW YORK, Mon: Mr. Webster Todd, Chairman
of the American National Transportation Safety Board
said today statistics showed that the chances of two
jumbo jets colliding on the ground were about 6 mil-
lion to one .....-AAP.”

Many people are frightened of flying and major air disasters increase such fears.
It seems clear from the report that the National Transportation Safety Board
has responded with a scientifically based assessment based upon hard data
(“statistics showed ...”) of the chances of such an accident occurring again so
that people could put their fears into perspective. Terry Speed, who has strong
research interests in probability, was intrigued by this and wondered how the
Board had calculated their figure. So Terry wrote to the Chairman. He received
the following reply from a high government official which we reproduce with
his permission:

Dear Professor Speed,
In response to your aerogram of April 5, 1977, the

Chairman’s statement concerning the chances of two
jumbo jets colliding (6 million to one) has no statistical
validity nor was it intended to be a rigorous or pre-
cise probability statement. The statement was made to
emphasize the intuitive feeling that such an occurrence
indeed has a very remote but not impossible chance of
happening.
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Thank you for your interest in this regard.

Sincerely yours, etc.

At best, the quoted probability was a subjective assessment. At worst, it was
a vanishingly small number plucked out of thin air to reassure the public.5

We have seen examples now of each of the three main ways that proba-
bilities are assigned to events: (a) from models, (b) from data, and (c)
subjectively. These different ways are now described in detail.

4.3.1 Probabilities from models

We can sometimes think up a sufficiently simple model of a real experiment
in which it is easy to determine a probability. The simplest cases of this occur
when the model leads us to believe that the outcomes are equally likely. This is
why we believe that the probability of getting a head when tossing a coin is 1

2 ,
that the chances of any particular outcome (say a 4) on rolling a standard die
is 1

6 , and that the chances of drawing any particular card (say ace of hearts)
from a standard deck of cards is 1 in 52. Unfortunately, the method tends to
be limited to a few special cases which are simple enough to be treated in this
way. Now we know that the probabilities that the model gives will only be
approximately true for the real experiment. If the assumptions of the model
are sufficiently wrong, the answers can be completely wrong. Let us think
about card games. The probabilities given for card games depend critically
upon the cards being “well shuffled” so that their order is “random”. From
experience we know that children and beginners can’t shuffle cards very well.
Some clumps of cards don’t get mixed up much. Experts are so clever at
shuffling that is hard for a layperson to know whether they are shuffling for
randomness or shuffling to their own advantage. There are also many famous
examples of where supposedly random lottery draws have exhibited behavior
which is clearly nonrandom. Perhaps the most famous example is the United
States military draft lottery of 1970 during the Vietnam War.

5The quoting of vanishingly small probabilities for air disasters is certainly not a thing of the

past. In 1989, a brand new British Midlands twin-engine Boeing 737–400 airliner crashed

near Kegworth in Central England killing 44 people. Early reports stated that both engines

failed. The NZ Herald (11 January 1989, page 6) quoted Captain John Guntrip, an official

of the British Guild of Air Pilots as saying “The odds of this happening are astronomical –
about one chance in one hundred million.”
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Figure 4.3.1 : Average lottery numbers by month.
Replotted from data in Fienberg [1971].

The military draft was based upon the dates of birth of eighteen-year-old
men and worked as follows. Three hundred and sixty six identical cylinders
were used, each containing a slip of paper with a day of the year written upon
it (1952, the men’s birth year, was a leap year). The cylinders were poured
into a two foot bowl, supposedly randomly mixed. An official drew them out
one by one. The order of drawing was the draft number . Thus if June 10
was drawn 5th, all eighteen-year-old males born on June 10 had the draft
number 5. The actual draft was performed by conscripting all of these men
who had a draft number lower than some limit where the limit was set to
fulfill the quota for soldiers for that year. Recall that most of these soldiers
would end up fighting in jungles of Vietnam so that randomness of draw was
important in the interests of fairness. Everyone should have the same chance
of being drafted. However, in 1970, reporters noted that men born later in the
year tended to have lower draft numbers (and therefore a greater chance of
being drafted) than those born earlier in the year (see Fig. 4.3.1). Statistical
calculations revealed that such a strong association between draft number and
birthdate could be expected to occur less than once every thousand years with
truly random lotteries. Moreover, from a close inspection of the mixing process
which was devised by a Colonel Fox and a Captain Pascoe, one might have
expected that December cylinders would tend to be closer to the top of the
bowl than those for January, say.

The job of devising the lottery was subsequently taken from the military
and given to statisticians at the US National Bureau of Standards who devised
a scheme based on various levels of randomization. Dates were placed into
date capsules in random order determined by a table of random numbers. The
date-cylinders were placed in a drum in random order (using another table).
Draft numbers (1 to 365 unless a leap year) were placed in a second drum in
random order (using a third table). Both drums were rotated for an hour. In
front of T.V. cameras, an official then pulled out cylinders in pairs, one from
each drum being the date of birth and its associated draft number. As Moore
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[1991] says, “it’s awful, but it’s random”. For further details see Moore [1991
: pages 62–65] or Fienberg [1971], and Rosenblatt and Filliben [1971].

4.3.2 Probabilities from data
If we did not have a model for coin tossing that was so obviously a good one,

a natural approximation for the probability of John Kerrich’s coin coming up
heads would be the proportion Kerrich observed, namely 5067/10, 000. More-
over, most people would transfer this figure to their own coins because they
could see no reason why their coin should behave differently from Kerrich’s.
Because the probability of an outcome is the long run relative frequency if we
can independently repeat the experiment over and over again, the bigger the
sample observed the more reliable the answer. We would have more faith in
Kerrich’s figure based upon 10, 000 tosses than a figure based upon only 100 or
even 1, 000 tosses.6

A major source of quoted probabilities for events is data on the relative fre-
quencies of these same events in the past. In New Zealand, last year roughly
700 people from a population of about 3 million were killed on the roads. Most
people would be fairly comfortable with a statement of the form “the prob-
ability that a randomly selected New Zealander will die on the roads next
year” is about 700/3, 000, 000. There are two important considerations how-
ever. Firstly, we can only make such statements if we think that the underlying
process is stable over time. For example, if we knew that the open road speed
limit would be increased before the end of next year, our estimate would have
to be revised upwards and it is by no means clear how we should do this.
Secondly, as noted above, our relative frequencies have to be taken from large
numbers for us to have much confidence in them as probabilities. A real suc-
cess story of the use of historical relative frequencies to provide probabilities
of similar events in the future is provided by the life insurance industry. Life
companies need good estimates of the chances that various types of people will
die within a given period so that they can calculate what premiums have to
be charged to cover the maximum probable levels of claims. Referring back to
the wire services report of Section 4.3, the US National Transportation Safety
Board could conceivably have quoted a relative frequency probability. Every
day, hundreds of commercial airliners take off and land all around the world.
The Safety Board could have estimated the number of takeoffs and landings in
the previous 10 years say, counted the number of runway collisions and quoted a
figure like 1 runway collision per 6 million takeoffs. And many newspaper read-
ers will probably have interpreted the Board’s (purely subjective) statement in
such terms.

There are two important relationships between probabilities from theoretical
models and probabilities based upon relative frequency data. Firstly, if the
model is reasonable, then for any experiment that can be repeated over and

6We will see how the estimate of a probability taken from a relative frequency becomes more
accurate as the number of repetitions increases in Chapter 7.
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over again, the probability of an event obtained from the model tells us the
relative frequency with which that event will occur over the long run. Secondly,
we may choose not to use the observed relative frequencies as our probabilities,
but simply use them to make us feel happier about our probabilities obtained
from the model. (Either that or tell us to throw away the model!) For example,
suppose we observed 24 heads in 40 tosses of some particular coin. Few people
would then use 24

40 for the probability of getting a head for that coin. Most
would observe that 24 in 40 was reasonably in line with the model-based value
of 1

2 and thus feel happier about using this value in future.

4.3.3 Subjective probabilities

In 1992, Lil E. Tee won the Kentucky Derby. Suppose that an ordinary
racegoer had thought that the chances of Lil E. Tee winning the Derby were 3

4 .
What would he or she mean? It doesn’t make sense to think of it in terms of
the 1992 Kentucky Derby being run many times and Lil E. Tee winning three
quarters of those races. The punter doesn’t make this assessment on the basis
that Lil E. Tee has won three quarters of its past races. The serious punter will
make an assessment from a subjective pooling of all relevant information that
he or she may be aware of including Lil E. Tee’s past record, the records of other
horses in the race, the state of the track and any information picked up about
the current form of the horses. But basically it comes down to a numerical
measure of the strength of that punter’s belief in the proposition that Lil E.
Tee will win. Another punter exposed to the same sources of information would
have a different strength of belief. Some punters may have a strong sense of
belief and thus give the proposition a high probability for what appear, to most
of us, to be ludicrous reasons.

In contrast to subjective probabilities, most people can agree about relative
frequency probabilities and even about model probabilities if they are backed up
by data. Unfortunately, subjective probabilities often masquerade as frequency
probabilities. Table 4.3.1, taken from Speed [1977], was abridged from a table
in the Reactor Safety Study (or Rasmussen Report), a major US governmental
study of the safety of nuclear power facilities.

Table 4.3.1 : Fatality Ratesa

Average Chance of Death
Accident per Year per individual

Motor Travel 1 in 3, 000
Air Travel 1 in 100, 000
Reactor accidents
(based on 100 reactors in the US)

(a) within a few weeks 1 in 300, 000, 000
(b) within about twenty weeks 1 in 16, 000, 000
aSource: Speed [1977]. Abridged from a table in the Reactor Safety Study cited by Speed.
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The first two probabilities are frequency probabilities based upon plenty of
hard data. One out of every 3, 000 of the millions of people in the US die
on the roads per year. One in every 100, 000 dies in an air accident in a
year. The juxtaposition with these figures makes it appear that the following
reactor accident values are similarly frequency probabilities based upon data.
In fact, they are based upon calculations of the likelihoods of chains of events
(see Section 4.7.3). Many of the individual probabilities in the chain were
somebody’s subjective assessment so that the result is really only a subjective
probability.

4.3.4 Manipulation of probabilities
While not all statisticians will agree about what probabilities should be as-

sociated with a particular real world event, all do agree on how probabilities
should be combined and manipulated. This is the subject of the following
section. It even applies to subjective probabilities. Subjective Bayesian statis-
ticians, who believe that the process of statistical inference should be concerned
with using data to refine one’s subjective degree of belief in a theory or state-
ment, still use the ordinary rules of probability for this refinement process.

Quiz on Section 4.3
1. What are the three types of probability we typically encounter?
2. Give examples of each from your own experience.
3. What assumption underlies probabilities given for card games?
4. When the relative frequency of an event in the past is used to estimate the probability it

occurs in the future, what assumption is being made?
5. What do all statisticians agree about with respect to probabilities (Section 4.3.4)?
6. When a weather forecaster says that there is a 70% chance of rain tomorrow, what do

you think this statement means?
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Exercises on Section 4.3

1. Suppose we make a spinner as shown in the picture.
The experiment is to spin the pointer vigorously and see
what color it stops on. How would you obtain a relative
frequency probability for the probability that it stops
on grey?
Can you calculate a model-based probability of stopping on grey? If so how?
And what assumptions do you need to make?

2. Consider shaking a thumb tack in a cup and toss-
ing the tack out onto a table. It can land one of two
ways (see picture). How would you construct a rel-
ative frequency probability for the probability that
the tack lands point down?
Can you construct a model-based probability? Justify your answer.

3. A random number table is constructed from a sequence of digits. Each new
digit in the sequence is obtained by choosing a digit at random from the 10
digits 0, 1, . . . , 9. Say whether each of the following statements is true or
false and why.
(a) Each column should have the same number of 9s in it.
(b) Each column should have a similar number of 4s as 5s.
( c ) After three 5s in a row, the next number is less likely to be a 5.
(d) We are less likely to see the sequence 1,2,3,4,5 than to see the sequence

2,7,4,9,3.

4.4 Simple Probability Models

4.4.1 Sample spaces
We begin with the idea of a random experiment , that is an experiment whose

outcome cannot be predicted. The term experiment is used in its widest sense.
It can mean either a naturally occurring phenomenon (e.g. measuring the height
of high tide on a given day, counting the number of aphids on a leaf), a scien-
tific experiment (e.g. measuring the speed of sound or the blood pressure of a
patient), or a sampling experiment (e.g. choosing a person at random from a
class of students using the lottery method and recording some characteristic of
the person).

A sample space, S, for a random experiment is
the set of all possible outcomes of the experiment.

In simple examples we can represent the sample space simply as a list. With
more complicated examples some mathematical representation may be neces-
sary. There are two important considerations in the way we list the outcomes.
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Firstly, every outcome must be represented. Secondly, to avoid ambiguity, no
outcome can be represented twice. This means that any outcome gives rise to
one and only one member of the list.

You will find that, apart from examples based on data tables and Case Stud-
ies, many of the examples in this chapter are very simple and not very “realis-
tic”. For example, you will often see examples about tossing a coin, or sampling
colored balls from a barrel. However, just as tossing a coin can serve as a useful
model for sex outcomes when having children, we shall find in Chapter 5 that
these very simple physical experiments will become the basis of models for a
vast array of real applications. In the meantime, however, we shall just concen-
trate on using them to enable us to explore how probabilities and probability
models behave.

Example 4.4.1.
(a) If we toss a coin twice we can represent the 4 possible outcomes in terms

of heads (H ) and tails (T ) as
S = {HH,HT, TH, TT},

where HT, for example, indicates a head followed by a tail.

(b) Similarly 3 tosses give
S = {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}.

( c ) If we roll two dice and record the numbers facing uppermost on each die
we could use
S = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (2, 6), (3, 1), . . . , (6, 6)},

where we have represented each of the 36 possible outcomes as a pair.
For example, (1, 6) represents rolling a 1 with the first die and a 6 with
the second.

(d) Suppose we interview a person at random and record their religious pref-
erence (if any). A sample space for the outcome of the interview might
be
S = {Buddhism, Christianity, Hinduism, Islam, Other, None}.

Here the category “Other” would be used to capture all of those who ad-
here to a religion not listed. Those under “None” would consist of people
who adhere to no religion. Have we got a sample space? We have catered
for all religions. However, we have not listed all answers people will give
us. We need a further category which we might call “Nonresponse” to
include, for example, those who will refuse to answer. Also, as with most
classification systems, there are problems with category definition. Con-
sider Christianity. There may be some sects which you would be unsure
about whether to list under Christianity or under Other.

( e ) Suppose that in contrast to (a) and (b) we now toss a coin until the
first tail appears. Then,

S = {T,HT,HHT,HHHT, . . . }.
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The rows of dots here means that the pattern keeps on repeating for ever.
There is no limit to the number of heads we could conceivably throw
before our first tail.

( f ) Suppose the experiment is to measure tomorrow’s rainfall. A possible S
is the set of all numbers greater than or equal to zero which we could
write in set notation as

S = {x : x ≥ 0}.
The curly brackets designate a set, and the colon stands for “such that”.
The expression for S is read as “the set of all x such that x is greater than
or equal to zero.” If we were prepared to believe that there was no way
that the day’s rainfall would be greater than 30mm, we could restrict S
to all numbers from 0mm to 30mm which we could write as

S = {x : 0 ≤ x ≤ 30}.

These examples illustrate a number of ideas. The first five, (a) to (e), are
just ordered lists, with a finite number of elements in (a) to (d), and an
infinite number of elements in (e). Such sample spaces are said to be discrete
in contrast to (f) which is called a continuous sample space as the actual
rainfall can take any value over an interval.

More that one sample space can be used to describe an experiment. This is
why we talk about a sample space, and not the sample space for an experiment.
In (b) above, we could count the number of heads in the three tosses and use
S1 = {0 heads, 1 heads, 2 heads, 3 heads}. Every outcome of the experiment
is represented and represented only once, as required. Which sample space we
use depends upon the type of question we wish to answer. For example, S1 lets
us talk about the number of heads but does not let us distinguish between the
order in which heads and tails fall, while S lets us address both issues.

4.4.2 Events

We often want to talk about a collection of outcomes which share some
characteristic, e.g. the outcomes resulting in “at least one head” if we toss a
coin twice. This leads to the following definition of an event:

An event is a collection of outcomes.
An event occurs if any outcome making up that event occurs.

The sample space itself is an event. An event may contain only a single out-
come.7

7Technically, an event is a subset of the sample space.
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Example 4.4.2.
(a) In Example 4.4.1(a), we toss a coin twice, giving S = {HH,HT, TH, TT}.

The event A = “at least one head” is given by A = {HH,HT, TH}. If
any one of these three outcomes occurs when we toss the coin twice, then
event A has occurred.

(b) In Example 4.4.1(d), the event B = “has a religious preference which is
not Buddhism or Christianity” is given byB = {Hinduism, Islam, Other}.

( c ) In Example 4.4.1(f), the event C = “rainfall between 5 and 20 mm inclu-
sive” can be written in mathematical notation as the interval of values

C = {x : 5 ≤ x ≤ 20}.

The complement of an event A, denoted A, occurs if A does not occur.

The complement of A, denoted A, contains all outcomes not in A. It is
sometimes helpful to read A as “not A”.

Example 4.4.3.
(a) The complement of A in Example 4.4.2(a) is A = {TT}. Verbally, the

complementary event to “at least one head” is “no heads” which in this
case is the same as “two tails”.

(b) In Example 4.4.1(b), where we toss a coin three times, the event B =
“at least two heads” = {HHH,HHT,HTH, THH} has complement
B = {HTT, THT, TTH, TTT}. Verbally, the complementary event to
“at least two heads” is “at most one head” or, equivalently here, “at least
two tails”.

It is useful to represent events diagrammatically. These are so-called Venn
diagrams. We tend to represent the sample space S as a rectangular box.
Events inside S are represented by the contents of a closed shape. Any shape
will do, although we shall usually use a circle, as in Fig. 4.4.1(a). In Fig. 4.4.1(b)
we have shaded the contents of A (which we think of as representing all of the
outcomes in A), whereas in Fig. 4.4.1(c) we have shaded the contents of A.

S
A AA

(a) Sample space con-
taining event A

(b) Event A shaded (c)  A shaded

Figure 4.4.1 : An event A in the sample space S.
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Exercises on Section 4.4.2
1. In Example 4.4.1(c), let A = “sum of the faces uppermost is 4”. List the

outcomes in A.

2. In Example 4.4.1(e), Let A = “even number of tosses before the tail”. What
outcomes are in A? Describe A both verbally and by listing its outcomes.

3. In Example 4.4.1(f), let A = “rainfall no more that 2mm”. Describe A
mathematically. Describe A, the complement of A both verbally and math-
ematically.

4. Write down a sample space for tossing a coin until we have two tails, three
heads, or a maximum of four tosses. What outcomes are in the event A =
“3 tosses made”?

4.4.3 Combining events
The set theory notations of union (∪) and intersection (∩) provide a useful

shorthand for writing expressions involving events. For two events A and B,
A∪B represents “A or B occurs” (where “or” is used in the inclusive sense of
A or B or both8), whereas A ∩ B represents “both A and B occur”. For part
of this chapter we shall use both words and symbols to remind the reader of
their relationships.

A ∪ B contains all outcomes in A or B (or both).
A ∩ B contains all outcomes which are in both A and B.

In practice, therefore, we read “∪” as “or” (in the inclusive sense) and “∩” as
“and”.

A B A B A B A B

(a) Events A and B (b)  “A or B”  shaded (c)  “A and B”  shaded (d) Mutually exclusive
events

Figure 4.4.2 : Two events.

Example 4.4.4.
(a) In Example 4.4.1(a) we have S = {HH,HT, TH, TT}. Let A be the

event“at least one head” and B be the event “at least one tail”. Then

A = {HH,HT, TH}, B = {HT, TH, TT},
A and B = A ∩B = {HT, TH} = “exactly one head”, and

A or B = A ∪B = {HH,HT, TH, TT} = S.

8This is sometimes written as “and/or”. Another phrase we shall also use here is “at least
one of A and B occurs”.
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(b) In the rainfall example [Example 4.4.1(f)] let A be the event “at least
10mm of rain” and let B be the event “between 5mm and 15mm inclu-
sive”. Then

A = {x : x ≥ 10}, B = {x : 5 ≤ x ≤ 15},
A and B = A ∩B = {x : 10 ≤ x ≤ 15}, and

A or B = A ∪B = {x : x ≥ 5}.

Two events A and B which have no outcomes in common are said to be
mutually exclusive.

Mutually exclusive events cannot occur at the same time.

You may find the phrase, “A excludes B” a useful memory aid for the meaning
of “mutually exclusive”. Any event A and its complement A are mutually
exclusive. We usually represent mutually exclusive events diagrammatically by
nonoverlapping shapes as in Fig. 4.4.2(d).

It is conventional to use A ∩ B = ∅ as a shorthand notation for “A and B
are mutually exclusive”. Here we have introduced an artificial event denoted
by ∅. This is called the empty or null event 9 and contains no outcomes.

Example 4.4.5.

(a) When tossing a coin twice [Examples 4.4.1(a), 4.4.2(a)] the events “head
first toss” = {HH,HT} and “tail first toss” = {TH, TT} are mutually
exclusive. However the two events “head first toss” = {HH,HT} and
“head second toss” = {HH,TH} are not mutually exclusive. Both of
these events occur if we observe 2 heads (i.e. {HH,HT} ∩ {HH,TH} =
{HH}).

(b) Consider rolling a die twice [Example 4.4.1(c)]. Let A = “sum from the
two faces is 4”, B = “3 on first roll” and C = “sum from the two faces
is 7”. Then A = {(1, 3), (2, 2), (3, 1)}, B = {(3, 1), (3, 2), . . . , (3, 6)} and
C = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. Now A and C are mutually
exclusive, i.e. A ∩ C = ∅. However A and B can occur together as
A ∩B = {(3, 1)}. Also B and C can occur together as B ∩ C = {(3, 4)}.
Fig. 4.4.3(c) shows a situation like this.

We can use Venn diagrams for three or more events as in Fig. 4.4.3.

9The null event corresponds to the empty set in set theory.
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A B

C

A B

C

A B C

(a)  All 3 overlap (b) A and B overlap
but not with C

(c) A and B overlap
as do B and C,
but not A and C

Figure 4.4.3 : Three events.

In Fig. 4.4.3(a) all of the three events overlap. In Fig. 4.4.3(b) events A and B
have outcomes in common, but event C shares no outcomes with either A or
B.

Exercises on Section 4.4.3
1. An experiment consists of tossing a coin and rolling a die. Give a sample

space for the experiment. Let A = “die scores 3” and B = “coin is heads”.
By listing outcomes, write down expressions for A,B,A∩B (A and B) and
A ∪B (A or B).

2. For the ABO blood system a person can be one of the four phenotypes A,
B, O and AB. Two people are chosen at random. Give a sample space for
the pair of phenotype outcomes. By listing outcomes, give expressions for
the following events:
(a) C = “both people have the same phenotypes”;
(b) D = “at least one person has phenotype A”; and
( c ) C ∩D (C and D).

3. Represent each of the following on a (separate) Venn diagram and then
express them in terms of A and B, using intersections, unions and comple-
ments as required:
(a) A occurs but B does not; (b) B occurs but A does not;
( c ) B occurs or A does not; (d) at least one of A or B occurs;
( e ) exactly one of A and B occurs; ( f ) neither A nor B occurs (try and

write this one down in two different ways).

*(g) If A ∩B = ∅, what can we say about A ∩B and A ∩B?

4. Suppose that we choose one month from the 12 months of the year at
random.
(a) Write down a sample space for this experiment.
Consider the events A = “first 2 months of the year”, B = “a month begin-
ning with the letter J” and C = “the last 6 months of the year”.
(b) Construct a Venn Diagram with these three events on it (cf. Fig. 4.4.3)

and place the outcomes of the experiment (i.e. the months of the year)
in the relevant parts of the diagram.

( c ) Which pairs of events are mutually exclusive and which are not?
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(d) What outcomes are in: (i) B (ii) B or C (B ∪ C) (iii) B and C
(B ∩ C) (iv) A or B (A ∪B) (v) A and B (A ∩B)?

4.4.4 Probability distributions
Traditional usage dictates that probabilities are numbers scaled to lie be-

tween zero and one (or 0% and 100%) and that outcomes with probability zero
cannot occur. In addition, we say that events with probability one or 100% are
certain to occur. We now go on to define the term probability distribution, but
only for models with finite sample spaces or with infinite sample spaces that
can be represented as a list,10 e.g. S = {H,TH, TTH, TTTH, . . . }.

Suppose S = {s1, s2, s3, . . . } is such a sample space. A list of numbers
p1, p2, . . . is a probability distribution for S provided the pi’s satisfy both

(i) the pi’s lie between zero and one, (0 ≤ pi ≤ 1),

and (ii) the sum of all the pi’s is one. (p1 + p2 + . . . = 1).

According to the probability model, pi is the probability that outcome si occurs.
We write pi = pr(si).

Probabilities lie between 0 and 1, and they add to 1.

In practice our aim is not just to specify a mathematically valid probability
model, namely one that satisfies conditions (i) and (ii) above, but also to
specify a model in which the stated probabilities give a good approximation to
the actual behavior of the experiment.

Example 4.4.6.
(a) Consider tossing a coin twice so that S = {HH,HT, TH, TT}. For a fair

coin, each outcome should be equally likely so that the probabilities for
the four outcomes, p1, p2, p3 and p4, should be identical. If we want them
to add to 1 each value must therefore be 1

4 , i.e.

pr(HH) = 1
4 , pr(HT ) = 1

4 , pr(TH) = 1
4 , pr(TT ) = 1

4 .

These probabilities constitute a probability distribution for S.

(b) Consider choosing a three child family at random and looking at the sexes
of the children from first born to last born, then

S = {GGG,GGB,GBG,BGG,GBB,BGB,BBG,BBB}.

Let us assume that looking at the sexes of a randomly chosen three-child
family is like tossing a fair coin three times and that each of the 8 ( =

10Technically such a sample space is said to be countably infinite.
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23) outcomes in S is equally likely to occur. Since the probabilities must
add to 1, each outcome has probability 1

8 .

( c ) To vary this a little, consider a couple producing children. They will stop
when they have a child of each sex, or stop when they have 3 children.
Now for this “experiment” the sample space is

S = {GGG,GGB,GB,BG,BBG,BBB}.

By comparing (a) and (b), a reasonable probability distribution might
be

pr(GGG) = pr(GGB) = pr(BBG) = pr(BBB) = 1
8 ,

pr(GB) = pr(BG) = 1
4 .and

These values are between 0 and 1 and add to 1, so that they qualify as a
probability distribution.11

(d) Frequently a sample space consists of just a list of numbers. For example,
if the outcome of the “experiment” in (b) is the number of girls, we have
S = {0, 1, 2, 3}. Then

pr(0) = pr(BBB) = 1
8 ,

pr(1) = pr(GBB) + pr(BGB) + pr(BBG) = 3
8 ,

pr(2) = pr(GGB) + pr(GBG) + pr(BGG) = 3
8 ,

pr(3) = pr(GGG) = 1
8 .and

This gives us the probability distribution associated with S. We can check
our arithmetic by noting that the above four probabilities add up to 1.
This example looks ahead to Chapter 5 where we discuss discrete random
variables. Here the number of girls is called a (discrete) random variable.

Probabilities of events

The probability of event A can be obtained by adding up
the probabilities of all the outcomes in A.

11After reading Section 4.7, you will be able to derive these probabilities as following from

the assumptions that pr(G) = pr(B) = 1
2

and the sexes of different children are statistically
independent.
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Example 4.4.7.
(a) In Example 4.4.6(a), let the eventA = “at least one head” = {HH,HT, TH}.

By adding the probabilities of the 3 outcomes in A we find

pr(A) = pr(HH) + pr(HT ) + pr(TH) = 1
4 + 1

4 + 1
4 = 3

4 .

(b) Similarly, for Example 4.4.6(c) with C being the event “first child is a
girl”, we have C = {GGG,GGB,GB} and

pr(C) = 1
8 + 1

8 + 1
4 = 1

2 .

Equally likely outcomes
If S consists of 10 equally likely outcomes, each with probability p then, since

the probabilities add to one, we have 10p = 1 or p = 1
10 . Thus each outcome

has a probability of 1
10 . If A has four outcomes in it, then using our addition

rule we have pr(A) = 1
10 + 1

10 + 1
10 + 1

10 = 4
10 . More generally, for any finite

sample space with equally likely outcomes,

pr(A) =
Number of outcomes in A

Total number of outcomes in S
.

Example 4.4.8 In Example 4.4.7(a), 3 out of 4 outcomes are in A, so that
pr(A) = 3

4 .

Example 4.4.9 Table 4.4.1, called a two-way frequency table or contingency
table, cross classifies job losses in the US over a three year period. Job losses
are broken down by the gender of the person who lost the job and the reason
given for losing it. The entries in the table represent the number of job losses
(in thousands) by people of the particular gender for a particular reason. There
were 5,584,000 jobs lost (to the nearest thousand) and of these, 1,703,000 were
lost by males because the workplace moved or closed down.

Table 4.4.1 : Job Losses in the US (in thousands) for 1987 to 1991a

Lay off Reason for Job Loss
Numbers Workplace Slack work Position Total
(thousands) moved/closed abolished

Male 1,703 1,196 548 3,447

Female 1,210 564 363 2,137

Total 2,913 1,760 911 5,584

aSource: Constructed from data in The World Almanac, [1993, p. 157].

Suppose we decided to choose a lost job at random so that we could inves-
tigate the circumstances. The sample space for this experiment consists of all
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the 5, 584, 000 lost jobs. Since these are all equally likely to be chosen, we can
obtain probabilities by counting numbers of outcomes. The outcomes making
up the event “lost by female as workplace moved/closed down” are all job losses
with this property and there are 1, 210, 000 of them. Thus,

pr(lost by female as workplace moved/closed down) =
1, 210, 000
5, 584, 000

= 0.2167

to 4 decimal places. There were 2, 137, 000 jobs lost by females, so that

pr(lost by female) =
2, 137, 000
5, 584, 000

= 0.3827 .

The event “lost by male for slack work” has 1,196,000 outcomes, so

pr(lost by male for slack work) =
1, 196, 000
5, 584, 000

= 0.2142 .

We can convert these to percentages by multiplying by 100% so that the last
answer becomes 21.42%.

The set of 6 combinations of classes in the table (“lost by male because
workspace moved/closed”, . . . , “lost by female as position abolished”) forms
an alternative sample space for this experiment as all eventualities are allowed
for and no “outcomes” are represented twice. However, the sample space con-
sisting of all 5,584,000 individual job losses was more useful because, since its
outcomes are all equally likely, we could obtain any relevant probabilities almost
immediately. Note that the probabilities relating to entries in the table turned
out to be the corresponding proportions of the population of job losses. Having
established that connection, the set of 6 classes represented in Table 4.4.1 also
functions as a usable sample space for the experiment because we can write
down the probabilities for its 6 outcomes. The 2 genders, or the 3 reasons for
job loss, are yet more possible sample spaces – although these latter sample
spaces do not allow us to consider questions about the relationship between
gender and reason for job loss.

Exercises on Section 4.4.4
1. Two dice are rolled. What is the probability that the sum of the two faces

uppermost is (i) 9 (ii) even?

2. (Example 4.4.9 revisited).
(a) What is the probability that a randomly chosen job loss was: (i) by

a female whose position was abolished? (ii) caused by the position
being abolished?

(b) Take the 6 classes in the table and represent them as a sample space
with an associated probability distribution.
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( c ) Do the same thing as (b) but using the three categories of job loss as
a sample space.

(d) In Example 4.4.9, why did we employ all job losses as our sample space
and not the sample space in (b)?

3. (Background thinking about the data in Table 4.4.1)
(a) In Example 4.4.9, we were careful not to equate the 5,584,000 job losses

over the 3 year period with 5,584,000 people. Why are the two not
equivalent?

(b) There were fewer job losses by females over this period. Does this
demonstrate that women are more reliable workers?

( c ) If you wanted to compare the relative chance of a random male losing
his job to that of a random female losing her job, what measure would
you use?

4.4.5 Probabilities and proportions

When we have a real (finite) population of units (e.g. people), the theory of
equally likely outcomes tells us that, when we choose a unit at random, the
probability that a unit with property A is chosen is numerically identical to the
proportion of units in the population with property A. For example, if 10%
of the population is left-handed, the chances that a randomly chosen person is
left-handed is also 10%.

The concepts of a proportion and a probability are quite distinct. A pro-
portion is a partial description of a real population – a form of summary.
Probabilities tell us about the chances of something happening in a random
experiment. However, the fact that proportions are numerically identical to
probabilities for a real population under the experiment “choose a unit at ran-
dom” means that we can use the probability notation and any formulae derived
for manipulating probabilities to solve problems involving proportions as well.
At times, where it makes good practical sense, we will express a real problem
in terms of proportions of a population rather than probabilities. We prefer to
do this then rather than introducing the artificial “choose a unit at random”
that would enable us to write everything in terms of probabilities.

Quiz on Section 4.4
1. What is a sample space? What are the two essential criteria that must be satisfied by a

possible sample space? (Section 4.4.1)

2. What is an event? (Section 4.4.2)

3. If A is an event, what do we mean by its complement A? When does A occur? (Section

4.4.2)

4. If A and B are events, when does A or B (A∪B) occur? When does A and B (A∩B)
occur? Using Venn diagrams, show what outcomes are in A or B and what outcomes are

in A and B? Do the outcomes in A or B include any outcomes in A and B? (Section

4.4.3)

5. How do we denote the fact that events C and D cannot both occur? What adjective is

used to describe such events? (Section 4.4.3)
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6. What are the two essential properties of a probability distribution p1, p2, . . . pn? (Section

4.4.4)

7. How do we get the probability of an event from the probabilities of outcomes that make

up that event? (Section 4.4.4)

8. If all outcomes are equally likely, how do we calculate pr(A)? (Section 4.4.4)

9. How do the concepts of a proportion and a probability differ? Under what circumstances

are they numerically identical? What does this imply about using probability formulae

to manipulate proportions of a population? (Section 4.4.5)

4.5 Probability Rules

4.5.1 One or two events
The following rules are clear for finite sample spaces12 in which we obtain

the probability of a event by adding the pi’s for all outcomes in that event.
The outcomes do not need to be equally likely.

Rule 1: The sample space is certain to occur.13

pr(S) = 1 .

Rule 2: pr(A does not occur) = 1− pr(A does occur).

pr(A) = 1 – pr(A) .

[Alternatively, pr(An event occurs) = 1 - pr(it doesn’t).]

*Rule 314: pr(A or B occurs) = pr(A occurs) + pr(B occurs) − pr(both occur).

pr(A∪B) = pr(A) + pr(B) – pr(A∩B) .

[In adding pr(A) + pr(B) we use the pi’s relating to outcomes in A∩B twice. Thus we

adjust by subtracting pr(A∩B).]

Rule 4: pr(A occurs) = pr(A occurs with B) + pr(A occurs without B).

pr(A) = pr(A ∩ B) + pr(A ∩B) .

A ∩ B
A B A B

A ∩ B

Rearranging Rule 4 we get

12However the rules apply generally, and not just to finite sample spaces.
13The sample space contains all possible outcomes.
14This rule has little use later on and may be omitted at first reading.
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pr(A ∩B) = pr(A) − pr(A ∩B).

A B A BA B

We can write down these rules from the diagrams without having to remember
them.

Mutually exclusive events

If A and B are mutually exclusive, they have no outcomes in common and
cannot occur at the same time. Thus pr(A ∩B) = 0 and

pr(A∪B) = pr(A) + pr(B).
A B

This is a special case of Rule 3.

Example 4.5.1. A random number from 1 to 10 is selected from a table
of random numbers. Let A be the event that “the number selected is 9 or
less.” As all 10 possible outcomes are equally likely, pr(A) = 9

10 = 0.9. The
complement of event A has only one outcome, so pr(A) = 1

10 = 0.1. Note that

pr(A) = 1− pr(A) = 1− 0.1 = 0.9 .

This formula is very useful in any situation where pr(A) is easier to obtain than
pr(A). It is used in this way in Example 4.5.4 and frequently thereafter.

*Example 4.5.2. Suppose that between the hours of 9.00am and 5.30pm, Dr
Wild is available for student help 70% of the time, Dr Seber is available 60% of
the time, and both are available (simultaneously) 50% of the time. A student
comes for help at some random time in the above hours. Let A = “Wild in”
and B = “Seber in”. Then A ∩B = “both in”. If a time is chosen at random,
then pr(A) = 0.7, pr(B) = 0.6 and pr(A ∩B) = 0.5.

What is the probability that at least one of the two Professors is available?
The event of interest is A ∪B and, by Rule 3,

pr(A ∪B) = pr(A) + pr(B) − pr(A ∩B)
= 0.7 + 0.6 − 0.5 = 0.8.

What is the probability that only Wild is available? The event of interest is
A ∩B. Using the rearranged version of Rule 4,

pr(A ∩B) = pr(A)− pr(A ∩B) = 0.7− 0.5 = 0.2 .
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Finally, what is the probability that neither is available? The event of interest
is A∩B but it is easy to see (e.g. from a diagram or from the verbal description)
that this event is the complement of A ∪B so that by Rule 2

pr(A ∩B) = 1− pr(A ∪B) = 0.2 .

Exercises on Section 4.5.1
1. A young man with a barren love life feels tempted to become a contestant

on the television game show “Blind Date”. He decides to watch a few
programs first to assess his chances of being paired with a suitable date,
namely someone he finds attractive and no taller than he is (as he is hung
up about his height). After watching 50 female contestants, he decides that
he is not attracted to 8, that 12 are too tall, and 16 are either unattractive
or too tall (or both). If these figures are typical, what is the probability of
getting someone:

(a) who is both unattractive and too tall?

(b) whom he likes i.e. is not unattractive or too tall?

( c ) who is too tall but not unattractive?

2. A house needs to be reroofed during Spring. To do this a dry, windless day
is needed. The probability of getting a dry day is 0.7, a windy day is 0.4
and a wet, windy day is 0.2. What is the probability of getting:

(a) a wet day?

(b) a day which is either wet or windy, or both?

( c ) a day when the house can be reroofed?

3. For the data and situation in Example 4.4.9, what is the probability that a
random job loss:

(a) was not by a male who lost it because the workplace moved?

(b) was by a male or someone who lost it because the workplace moved?

( c ) was by a male but for some reason other than the workplace moving?

*4. Suppose A and B are mutually exclusive events with pr(A) = 0.3 and
pr(B) = 0.4. Find
(a) pr(A) (b) pr(A∩B) ( c ) pr(A∪B) (d) pr(A∩B).

*5. Try to convince yourself of the correctness of Rule 3 by drawing diagrams.

4.5.2 More than two events
We can write “at least one of the k events A1, A2, . . . , Ak occurs” as “A1

or A2 or . . . or Ak occurs (in symbols A1 ∪A2 ∪ · · · ∪Ak)”. Similarly, we can
write “every one of the k events A1, . . . , Ak occurs” as “A1 and A2 and . . .
and Ak occurs (in symbols A1 ∩A2 ∩ · · · ∩Ak)”.
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Events A1, A2, . . . , Ak are all mutually exclusive if they have no overlap, i.e. if
no two of them can occur at the same time. IfA1, . . . , Ak are mutually exclusive
then we can get the probability of their union simply by adding, i.e.,

pr(A1 ∪A2 ∪ . . . ∪Ak) = pr(A1) + pr(A2) + . . . + pr(Ak)

( =
k∑
i=1

pr(Ai)

)
.

Partitions: Events C1, C2, . . . , Ck form a partition of the sample space if
they are mutually exclusive and together account for all possible outcomes
(i.e. C1 ∪ C2 ∪ . . . ∪ Ck = S). Any event and its complement (e.g. A and A)
form a two-event partition. We have a pictorial representation of a partition
of 5 events in Fig. 4.5.1. As a concrete example, a jigsaw puzzle represents a
partition of a picture.

C1 C2

C3C4
C5

AC1 C2

C3C4
C5

AC1 C2

C3C4
C5

C1

C3C4
C5

2C

(a) The Ci’s. (b) C2 shaded. (c) A shaded. (d) Each A ∩ Ci
shaded differently.

Figure 4.5.1 : Partition theorem.

A partition is a way of dividing up
a sample space into separate pieces.

If we have such a partition, then adding up the probabilities associated with
the (mutually exclusive) shaded bits in Fig. 4.5.1(d) gives us Rule 5.

Rule 5: (Partition Theorem)

pr(A) = pr(A and C1) + pr(A and C2) + . . .+ pr(A and Ck)

= pr(A ∩ C1) + pr(A ∩ C2) + . . .pr(A ∩ Ck)(
=

k∑
i=1

pr(A ∩ Ci)
)
.

This is a generalization of Rule 4 where our partition was C1 = B and
C2 = B.
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Example 4.5.3 A number is drawn at random from 1 to 10 so that the
sample space S = {1, 2, ..., 10}. Let A = “an even number chosen” and let
C1 = {1, 2, 3}, C2 = {4, 5, 6} and C3 = {7, 8, 9, 10} be our partition of S. We
shall now verify rule 5 in this case for this situation.

Since outcomes are equally likely, pr(A) = 5
10 = 0.5. Also A ∩ C1 = {2},

A ∩ C2 = {4, 6} and A ∩ C3 = {8, 10} so that

pr(A ∩ C1) + pr(A ∩ C2) + pr(A ∩ C3) =
1
10

+
2
10

+
2
10

=
5
10

= pr(A).

Example 4.5.4 Table 4.5.1, called a two-way table of proportions or con-
tingency table (introduced briefly in Section 3.3), cross classifies couples in the
US, who are not married to each other, by the marital status of the male and
female partners. Each entry within the table is the proportion of couples with
a given combination of marital statuses. Let us consider choosing a couple at
random. We shall take all of the couples represented in the Table as our sample
space. The table proportions give us the probabilities of the events defined by
the row and column titles (see Example 4.4.9 and Section 4.4.5). Thus, the
probability of getting a couple where the male has never been married and the
female member is divorced is 0.111. Here, “married to other” means living as
a member of a couple with one person while married to someone else.

Table 4.5.1 : Proportions of Unmarried Male-Female Couples Sharing
a Household in the US, 1991a

Female
Male Never Divorced Widowed Married Total

Married to other

Never Married 0.401 .111 .017 .025 .554

Divorced .117 .195 .024 .017 .353

Widowed .006 .008 .016 .001 .031

Married to other .021 .022 .003 .016 .062

Total .545 .336 .060 .059 1.000

aSource: Constructed from data in The World Almanac, [1993, p. 942].

The 16 cells in the table, which relate to different combinations of the status
of the male and the female partner, correspond to mutually exclusive events
(no couple belongs to more than one cell). For this reason, we can obtain
probabilities of unions by adding cell probabilities. Moreover, these 16 mutually
exclusive events account for all couples so they form a partition of the sample
space. The 4 events classifying the status of the female alone form another
partition. So too do the 4 events relating to classifying the male alone.

Each row total in the table tells us about the proportion of couples with
males in the given category regardless of the status of the females. Thus, in
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35.3% of couples, the male is divorced, or equivalently, 0.353 is the probability
that the male of a randomly chosen couple is divorced. Use of a row total in
the table in this way is an illustration of the Partition Theorem in action. The
event A of interest here is “male divorced”. The 4 partitioning events are C1 =
“female never married”, . . . , C4 =, “female married to other”. Adding along
the row corresponds to

∑
pr(A and Ci) which by the Partition Theorem gives

us pr(A), or the probability that the male is divorced. The column totals work
the same way for females.

We shall continue to use Table 4.5.1 to further illustrate the use of the prob-
ability rules in the previous subsection. The complement of the event “at least
one member of the couple has been married” is the event that both are in the
“never been married” category. Thus by Rule 2,

pr(At least one has been married) = 1− pr(Both never married)
= 1− 0.401 = 0.599 .

Note how much simpler it was in this case to use the complement than to
calculate the desired probability directly by adding the probabilities of the 15
cells which fall into the event “at least one married”.

Exercises on Section 4.5.2

1. Do the events A, B, and C listed in problem 4 of Exercises 4.4.3 form a
partition of the sample space? Why or why not?

2. Chlorofluorocarbons (CFCs) have been identified as important causes of the
depletion of the ozone layer. Of the 750,000 metric tons of these substances
used worldwide in 1991 (TIME , 17 February 1992), 15% were used in aerosol
sprays, 15% in refrigeration, 20% in vehicle air-conditioning, 24% in cleaning
fluids and 24% in foam (for insulation, packing etc.). Does this form a
partition of CFC usage? Justify your answer.

3. Using the data in Table 4.5.1, what is the probability that for a randomly
chosen unmarried couple:

(a) the male is divorced or married to someone else?

(b) both the male and the female are either divorced or married to some-
one else?

( c ) neither is married to anyone else?

(d) at least one is married to someone else?

( e ) the male is married to someone else or the female is divorced or both?

( f ) the female is divorced and the male is not divorced?

(g) Show how the column sum which gives pr(female is divorced) = 0.336
is an example of the Partition Theorem.
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Quiz on Section 4.5

*1. Why in the formula pr(A ∪ B) = pr(A)+ pr(B)− pr(A ∩ B) do we subtract pr(A ∩ B)?

(Section 4.5.1)

2. If A and B are mutually exclusive, what is the probability that both occur? What is the

probability that at least one occurs (i.e. that A ∪B) occurs? (Section 4.5.1)

3. How do we find the probability of a union of two or more mutually exclusive events?

(Section 4.5.2)

4. What does it mean for events C1, C2, . . . , Ck to be a partition of the sample space? If

k = 2, how is C2 related to C1? (Section 4.5.2)

4.6 Conditional Probability

4.6.1 Definition

Our assessment of the chances that an event will occur can be very different
depending upon the information that we have. An estimate of the probability
that your house will collapse tomorrow should clearly be much larger if a violent
earthquake was expected than it would be if there were no reason to expect
unusual seismic activity.

The two examples which follow give a more concrete demonstration of how
an assessment of the chances of an event A occurring may change radically if
we are given information about whether event B has occurred or not.

Example 4.6.1. Suppose we toss two fair coins and S = {HH,HT, TH, TT}.
Let A = “two tails” = {TT} and B = “at least one head” = {HH,HT, TH}.
Since all four outcomes in S are equally likely, P (A) = 1

4 . However, if we know
that B has occurred, then A cannot occur. Hence the conditional probability
of A given that B has occurred is zero.

Example 4.6.2. Table 4.6.1 was obtained by cross-classifying 400 patients
with a form of skin cancer, called malignant melanoma, with respect to the
histological type15 of their cancer and its location (site) on their bodies. We
see, for example, that 33 patients have nodular melanoma on the trunk while a
total of 226 have some form of melanoma on the extremities. Suppose we were
to select one of the 400 patients at random.

15Histological type means the type of abnormality observed in the cells that make up the
cancer.
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Table 4.6.1 : Four Hundred Melanoma Patients by Type and Sitea

Site
Type Head and Trunk Extremities Row

Neck Totals

Hutchinson’s
melanomic freckle 22 2 10 34

Superficial spreading
melanoma 16 54 115 185

Nodular 19 33 73 125

Indeterminant 11 17 28 56

Column Totals 68 106 226 400
aReproduced from Plackett [1981].

Let A = “cancer is on the Trunk”. Clearly, pr(A) = 106/400. Let B be the event

“cancer type is Nodular”. If we are now told that a patient with Nodular cancer was

selected, then the probability that the selected patient has cancer on the trunk may

be different – this latter probability is pr(A given B). We are now only concerned

with the patients who have nodular cancer, i.e. the 125 patients in the third row of

the table. Of this group, 33 have cancer on the trunk and each of them is equally

likely to be chosen from the group with nodular cancer. Hence, (where “#” is read

“number of”)

pr(A given B) =
33
125

=
# Nodular patients with cancer on Trunk

# Nodular patients
,

and we denote this probability by pr(A | B). In more general terms

pr(A | B) =
# outcomes in A and B

# outcomes in B

=
# outcomes in A and B/# outcomes in S

# outcomes in B/# outcomes in S
=

pr(A and B)
pr(B)

.

What about sample spaces where the outcomes are not all equally likely? The above

expression for pr(A | B) can still be justified in much the same way when probabilities

are regarded as long run relative frequencies. We therefore use the expression as a

general definition of pr(A | B) for all situations.

The (conditional) probability of A occurring
given that B occurs is given by

pr(A | B) =
pr(A∩B)
pr(B)

.
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Hence the probability that A occurs given B has occurred is the probability that both

occur divided by the probability B occurs.16

Similarly, pr(B | A) =
pr(A ∩B)

pr(A)
.

Example 4.6.3. The data in Table 4.6.2 comes a telephone poll of 800 adult

Americans carried out in 1993. The question asked was: “Should smoking be banned

from workplaces, should there be special smoking areas, or should there be no restric-

tions?”

Table 4.6.2 : Proportions of Smokers and Non-smokers
and Their Responses to Restrictionsa

Banned Special areas No restrictions Total

Non-smokers .3350 .3975 .0238 .7563
Smokers .0200 .1963 .0274 .2437

Total .3550 .5938 .0512 1.0000
aSource: The results of a telephone poll of 800 adult Americans from TIME 18 April 1994.

Suppose that one of the 800 who responded was chosen at random and we
want to calculate the (conditional) probability that a person favors banning
smoking, given we know whether they smoke or not. We can work these out
using the conditional probability formula as follows:

pr(banned | non-smoker) =
pr(banned and non-smoker)

pr(non-smoker)

=
0.3350
0.7563

= 0.4429.

Similarly

pr(banned | smoker) =
0.0200
0.2437

= 0.0821.

Note how different these two probabilities are. The probability that a person
chooses the category “banned” depends very strongly on whether the person
smokes or not, as might be expected. Notice that both of the probabilities
are calculated by dividing each entry in column 1 by the corresponding row
total. For example, the first probability is simply the proportion of the first
row total in the category “banned”. It may help the reader to imagine all
the numbers multiplied by 10,000, thus removing the decimal points. We can
then think in terms of ratios of frequencies rather than ratios of proportions;
that is, of 7563 non-smokers, 3350 wanted smoking banned. Our answers can

16We must have pr(B) positive. It makes no intuitive sense, anyway, to compute the condi-
tional probability of A given B when B cannot occur.
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also be interpreted as proportions rather than probabilities: the proportion
of non-smokers in the survey who prefer banning smoking in workplaces is
0.4429. This exemplifies how we can use the probability notation and formulae
to manipulate proportions as well as probabilities.

Instead of working with row totals we can also work with column totals. For
example,

pr(non-smoker | banned) =
0.3350
0.3550

= 0.9437.

From this we can say that about 94% of people in the survey who favor banning
smoking from the workplace are non-smokers. In answering questions about
two-way tables, you will be asked to provide answers in terms of probabilities,
proportions or percentages; the general public are often a lot happier with
percentages than proportions or probabilities.

Finally we might ask how useful are such proportions. If the 800 respondents
represent a random sample of Americans, then we can use these proportions as
estimates for the whole population.

Exercises on Section 4.6.1

1. Using Table 4.6.1, what is the probability that a randomly chosen patient
has

(a) nodular cancer, given they have cancer of the head and neck?

(b) cancer of the head, neck or trunk, given that their cancer is nodular.

*2. In Example 4.5.2 Wild was available with probability 0.7, Seber with proba-
bility 0.6 and both with probability 0.5. What is the probability that Seber
is available, given that Wild is available?

The conditional probability formula is not difficult to operate. A more difficult
skill is recognizing where a conditional probability is required. No one in real
life will ever ask you “what is the probability of A given B?” The problem
arises in other guises, for example, “if A occurs, how likely is B?”, or, in terms
of proportions of a population, “what proportion of those with property A also
have property B?” In the exercises to follow, we have also included a few
unconditional statements to keep you alert.

3. The following relate to Example 4.4.9 and Table 4.4.1.

(a) (i) What is the probability that a random job loss was by a female
and the reason given was slack work? (ii) Where a job was lost by a
female, what is the probability that the reason given was slack work?

(b) (i) What proportion of jobs were lost by males for slack work?
(ii) What proportion of male job losses were for slack work?
(iii) What proportion of job losses were due to slack work?

(c) What proportion of all job losses were due to the position being abol-
ished: (i) for females (ii) for males? (iii) in general?
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4. The following relate to the data and story of Example 4.5.4 and Table 4.5.1.
Parts (a) and (b) concern a randomly selected couple.
(a) What is the probability that: (i) the male is divorced? (ii) the female

is divorced if the male is divorced? (iii) the male partner of a divorced
female is divorced? (iv) the male is divorced and the female is divorced?

(b) (i) By considering all the relevant conditional probabilities, where the
female has been widowed, what is the marital status of the male most
likely to be? (ii) You can answer part (i) without doing the con-
ditional probability calculations. Look at your calculations and see
if you can see why (and how) this can be done. (iii) If the male is
“never married”, what is the female most likely to be? What is the
probability that she will have this status?

(c) (i) For what proportion of couples in which the male is “never married”
is the female also “never married”? (ii) For what proportion of
couples is the male “never married” and the female “never married”?

(d) For what proportion of couples in which the male is no longer married
(i.e. divorced or widowed) is the female also no longer married?

5. From Table 4.6.2, find the proportion of non-smokers who are in favor of
some form of restriction, i.e. having either a ban or special smoking areas.
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4.6.2 Multiplication rule
Sometimes the available information is conditional and we have to use it to

find the probabilities (or proportions) of other events. This often involves using
the so-called multiplication rule (to follow), often as part of a larger calculation.

Example 4.6.4. In 1992, 14% of the population of Israel was Arab, and of
those, 52% were described as living below the poverty line. What proportion
of the population of Israel consisted of Arabs living below the poverty line?

There are two basic events here “Arab” and living below the poverty line
which we shall shorten to “Poor”. We see that pr(Arab) = 0.14. The 52%, how-
ever, relates only to the Arab subset of the population and is thus conditional.
We have 0.52 = pr(Poor | Arab). The quantity we want is pr(Poor and Arab).

(Multiplication Rule)

pr(A∩B) = pr(B)pr(A|B) = pr(A)pr(B|A)

The multiplication rule follows directly from the definition of conditional prob-
ability.

Example 4.6.4 cont The multiplication rule gives us

pr(Poor and Arab) = pr(Arab) pr(Poor | Arab)
= 0.14× 0.52 = 0.0728,

or just over 7% of the population being Arabs living below the poverty line.

A more elementary way of understanding the multiplication rule is as a
“proportion of a proportion” or a “percentage of a percentage” – you may
recall from basic arithmetic that when you want to find a fraction of a fraction,
you multiply. The situation is illustrated in Fig. 4.6.1.

0
0.0728

0.14 1.0

 All people in Israel

14%  of these are Arab

52%  of this  14%  are poor

7.28% of Israelis are both poor and  Arab
(.52 × .14  =  .0728)

Figure 4.6.1 : Illustration of the multiplication rule.

Remember that a percentage is a shorthand way of expressing a fraction,
e.g. 14% = 14

100 . Thus, 14%× 52% is really

14%× 52% =
14
100
× 52

100
=

728
10, 000

= 7.28% .
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Example 4.6.5. Two balls are drawn at random, one at a time without
replacement, from a box of 4 white and 2 red balls. What is the probability
that both balls are white?

Let W1 and W2 represent the events “first ball is white” and “second ball is
white” respectively, then

pr(W1 ∩W2) = pr(W1) pr(W2 |W1).

As each ball is equally likely to be selected as the first ball, pr(W1) is the
number of white balls divided by the number of balls i.e. 4

6 . Once the first ball
is chosen, there are 5 balls left of which 3 are white. Hence pr(W2 | W1) = 3

5
and

pr(W1 ∩W2) =
4
6
× 3

5
=

2
5
.

Exercises on Section 4.6.2

1. In the US, approximately 1% of the population is schizophrenic, 0.8% of
people are homeless, and one third of the homeless are schizophrenic. Using
probability notation and the events “homeless” and “schizophrenic”, write
down the three pieces of information given here in terms of probability
statements about events. (Note: the 1% is inaccurate – see Review Exercises
3, problem 13).

2. According to a survey reported in the Kitchener-Waterloo Record (17 May
1989), 26% of residents of the Canadian province of British Columbia aged
between 18 and 25 had used cocaine, and 77% of those who tried it once
used it again. Based on these figures, what proportion of B.C. residents in
this age group had used cocaine at least twice?

3. Referring to Example 4.6.5, what is the probability that both balls are red?

4. 52% of the South Korean workforce works in the service sector of the econ-
omy (TIME , 2 July 1990). Since 62.5% of Koreans live in South Korea, we
shall assume that 62.5% of the workforce lives in the South. What percent-
age of the entire workforce on the Korean peninsula both lives in the South
and works in the service sector?
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4.6.3 More complicated calculations using conditional
probabilities

Example 4.6.6 Suppose we sample 2 balls at random, one at a time without
replacement, from an urn containing 4 black balls and 3 white balls. We want
to calculate the probability that the second ball is black. When we come to
make the second draw, the chances of drawing a black ball depend upon what
ball was removed at the first draw because that determines the composition of
the balls in the urn. We will, therefore, have to use information which comes
naturally in the form of conditional probabilities. We use the same notation
as in Example 4.6.5, e.g. B2 denotes the event that the second ball sampled is
black.

Tree diagrams:
The method we are going to use to tackle problems like the above involves

a type of diagram called a (probability) tree diagram. These diagrams often
provide a convenient way of organizing (and then using) conditional probability
information. To motivate the discussion, Fig. 4.6.2 gives a tree diagram for the
situation in Example 4.6.6. Along the way, we will state some general rules for
constructing and using such trees.

pr(W ) =1 3
7

B1

W1

B2

W2

First
Draw

Second
Draw

Path

1

2

B2

W2

3

4

pr(B
 ) =1

4
7

pr(B |B ) =
2 1

3
6

pr(W |B ) =2 1 3
6

pr(B |W ) =
2 1

4
6

pr(W |W ) =2
1 2

6

Figure 4.6.2 : Tree diagram for a sampling problem.

The probability written beside each line segment in the tree is the probability
that the right hand event on the line segment occurs given the occurrence of all
the events that have appeared along that path so far (reading from left to right).
Each time a branching occurs in the tree, we want to cover all eventualities so
the probabilities beside any “fan” of line segments should add to unity.

Because the probability information on a line segment is conditional upon
what has gone before, the order in which the tree branches should reflect the
type of information that is available. In Example 4.6.6, we have unconditional
probability information about the first draw so the first set of branches of the
tree concern the first draw. The readily available probability information about
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the second draw depends upon (i.e. is conditional upon) what happened at the
first draw and thus forms the second set of branches. We draw the tree to
represent all possible outcomes.

Rules for use

(i) Multiply along a path to get the probability that all of the events on that
path occur.

(ii) Add the probabilities of all whole paths in which an event occurs to obtain
the probability of that event occurring.

Example 4.6.6 cont. To get the probability of obtaining a black ball on
the second draw, the rules tell us to multiply along paths and add whole paths
containing a black ball on the second draw (namely, paths 1 and 3). This gives
us

pr(B2) =
4
7
× 3

6
+

3
7
× 4

6
=

4
7
.

Why do these rules work?

Suppose that we have 2 events, A and B, each of which may or may not
occur. A tree diagram is presented in Fig. 4.6.3. The order of branching used
there is appropriate in situations where the available probability information
about B is conditional upon whether or not A occurs.

pr ( 
A)

pr ( A)

A

A
B

B

B

B

pr ( B | A  )

pr ( B | A  )

pr ( B | A  )

pr ( B | A  )

pr ( A ∩ B)

pr ( A ∩ B)

pr ( A ∩ B)

pr ( A ∩ B)

First
Event

Second
Event

Product
Equals

Path

1

2

3

4

Figure 4.6.3 : Tree diagram for whether or not two events occur.

Applying the Rule (i) to the upper path (Path 1) of Fig. 4.6.3, we get pr(A∩
B) = pr(A)pr(B |A) as in the third column of the figure. So this first rule
governing use of the tree is just a restatement of the multiplication rule.17 Let
us now think about applying the second rule to obtaining pr(B). This rule
follows from the fact that all the paths containing B correspond to mutually

17Although we have showed this only in a simple case, the reasoning is generally true for

any properly laid out probability tree, even if it has multiple branchings. The generalized
multiplication rule for chains involving three or more events is given in Section 4.6.4.
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exclusive events in which B occurs. Thus, to get pr(B) we add the probabilities
of all such events.

Using the multiplication formula of the previous Section 4.6.2 we can re-
express probability Rule 4 (Section 4.5.1) in terms of conditional probabilities,
namely:

Alternative expression of Rule18 4

pr(B) = pr(A ∩B) + pr(A ∩B) (Rule 4)

= pr(A) pr(B | A) + pr(A) pr(B | A).

This is exactly what we get by applying the rules governing the use of the tree
(multiply along paths and then add whole paths) to event B.

Example 4.6.7 Of American women using contraception19: 38% are steril-
ized, 32% use oral contraceptives, 24% use barrier methods (diaphragm, con-
dom, cervical caps), 3% use IUD’s, and 3% rely on spermicides (foams, creams,
jellies). If we define the failure rates of a method as the percentage of who
become pregnant during a year of use of the method, then the failure rates for
each of these methods are approximately: sterilization 0%, the contraceptive
pill 5%, barrier methods 14%, IUD’s 6%, and spermicides 26%. What percent-
age of women using contraception experience an unwanted pregnancy over the
course of a year?

In this problem, we have information on the method of contraception used and
on failure rates of those contraceptives. Since we are only considering women
who are using contraception, the method of contraception forms a partition
of the sample space since it divides the population of all such women up into
distinct groups. We are given the proportions of women falling into each group,
i.e. information of the form pr(Method). Our information on contraceptive fail-
ure depends upon the contraceptive used, i.e. is of the form pr(Failure |Method).
Thus the first fan of branches of the tree should be to all of the methods. The
second set of branches is then failure or not failure within methods. The tree
and all the relevant probabilities are given in Fig. 4.6.4. We have denoted the
event of failure20 by “F”. To save space, we have omitted the probabilities in
the lower half of most of the pairs of outcomes: the lower probability will be
one minus the upper probability.

18The roles of A and B have been interchanged from the earlier statement of Rule 4 to

correspond to the order of events used in the tree diagram.
19These figures are from TIME , 26 February 1990.
20In the sense that the woman becomes pregnant during the year.
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Sterilization
(St)

Oral
(O)

Barrier
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IUD
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Spermicide
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Contraception (Fail/not)

PathOutcome

pr
(S

t) 
= 0.
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pr(O
) = 0.32

pr(B) = 0.24
pr(I) = 0.03

pr(F | St) = 0

pr(F | O) = 0.05

pr(Sp) = 0.03

pr(F | St) = 1

pr(F | O) = 0.95

pr(F | B) = 0.14

pr(F | I) = 0.06

pr(F | Sp) = 0.26

Figure 4.6.4 : Tree diagram for contraceptive failure.

We can find pr(F ) by applying the two rules governing use of the tree
(namely, multiplying along paths and adding whole paths 1, 3, 5, 7, 9 con-
taining F ) to obtain

pr(F ) = .38× 0 + .32× .05 + .24× .14 + .03× .06 + .03× .26
= 0.0592 .

Another way of computing this probability by constructing a two-way table
is described later in Section 4.8. We can also interpret this probability as a
proportion or percentage, namely 5.92% of women in the study experienced
contraceptive failure. Finally we note that the usefulness of such proportions
or percentages in applying them to the whole population will depend on how
the survey was carried out and the size of the survey.

Theory
Let us now discuss the type of situation we saw in Example 4.6.7 in a more

general setting. The entire sample space is broken up into separate pieces
C1, C2, . . . Ck (i.e. a partition, see Section 4.5.2). We are interested in an event
A but our available information is of the form pr(Ci) and pr(A | Ci). We lay
this information out in a tree diagram as in Fig. 4.6.5. Either by applying
the rules about trees (multiply along paths and add whole paths) to A, or
by applying the multiplication rule to the earlier statement of the Partition
Theorem (Section 4.5.2), we obtain the following:

Alternative expression of the Partition Theorem

pr(A) =
k∑
i=1

pr(A ∩ Ci) =
k∑

i=1

pr(Ci)pr(A|Ci).
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In our experience, many people find it easier to solve problems by using trees
to organize their thinking pictorially than by using formulae, particularly when
they are just beginning to learn to manipulate conditional probabilities. How-
ever, it is essential that we are dealing with a partition which we can check by
seeing if the probabilities labeling the first fan of branches add to unity.

A

...
A

A

A

A

A
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Figure 4.6.5 : Tree diagram for the partition problem.

Two Case Studies showing the application of these ideas to real problems
follow before the Exercises on this subsection. Both Case Studies illustrate use
of the situation depicted in Fig. 4.6.3.

*Case Study 4.6.1 Randomized response
Imagine, as part of a survey, asking the question, “Have you ever physically

or sexually abused your children?” Clearly most child abusers are not going to
admit to it and say “Yes” in a face to face interview. Such a survey will grossly
under-report the prevalence of child abuse in the population under study. If the
personal element is reduced, e.g. by using a telephone rather than a face to face
interview, or better still a self-administered questionnaire, the under-reporting
will be decreased. However, it will still be present so long as respondents think
that someone/anyone will know what answer they gave. Such under-reporting
can be expected for any question in which a “Yes” answer is an admission of
doing or thinking something which tends to be thought of as socially undesirable
e.g. drunk driving, some form of criminal activity, not voting. Randomized
response is a strategy for obtaining an estimate of the proportion of people
who would answer “Yes” to a threatening question without the interviewer
knowing whether a particular respondent is admitting to the activity or not.
There are many slight variants but here is one version.

Instead of just presenting the (threatening) question of interest, a pair of
questions are presented, the real question printed in red and a nonthreatening
dummy question with a known response rate, printed in green. We shall use,



42 Probability

“Was your mother born in May?” as our dummy. The proportion of people
born in May should be obtained from birth statistics, but we shall approximate
it by 1

12 . A random mechanism is then used to choose which question the
respondent is to answer. Locander et al. [1976] use a box with 50 colored
beads, 70% of which are red and 30% are green. The box is shaken and one
bead appears at a small window. If a red bead shows, the respondent answers
the red question. If the green bead shows, they answer the green question. The
interviewer does not see the bead and thus does not know which question is
being answered. The situation is depicted in Fig. 4.6.6.

11

“Is the bead
red or green ?”

pr(red) = 0.7

pr(green) = 0.3

red question (real)
“Child abuse?”

Yes

No

?

green qu. (dummy)
“Birthday in May?”

1
12 Yes

No

Question
asked Response

?

12

Figure 4.6.6 : Randomized response.

Suppose 8% (0.08) of our sample answered “Yes”. Now using the tree (mul-
tiply along paths and add whole paths containing “Yes”), we obtain

pr(answering yes) = pr(getting red) pr(answering yes | red)

+ pr(getting green) pr(answering yes | green).

Using the sample proportion of 0.08 to approximate pr(answering yes), we
obtain

0.08 = 0.7× pr(answering yes | child-abuse question) + 0.3× 1
12 .

We solve this equation to obtain the probability of answering yes to the child-
abuse question, namely

pr(answering yes | child-abuse question) =
0.08− 0.3× 1

12

0.7
= 0.79.

For honest replies it is important that the respondent is convinced that the
interviewer does not know which question he or she is answering. Thus it
must be clear that the interviewer cannot know the correct answer to the
dummy question and “Yes” answers to the dummy cannot be so rare that
the respondent gets suspicious. The technique is reasonably effective but not
perfect. For example, Locander et al. [1976] experienced some under-reporting
in a conviction for drunken driving question in which the responses could be
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validated against conviction records. Still, randomized response resulted in
considerably less under-reporting than any of the interview methods (face-
to-face, telephone or self-administered). Only 1 in 20 respondents found the
randomized response technique confusing, silly or unnecessary.

Case Study 4.6.2 How big a problem is AIDS in your community?

It is well known that AIDS is one of the most important public health prob-
lems facing the world today. AIDS is believed to be caused by the human
immunodeficiency virus (HIV), but many years can elapse between HIV infec-
tion and the development of AIDS. In 1990, the World Health Organization
(WHO) projected between 25 and 30 million cases of HIV infection world wide
by the year 2000. The United States, where 200,000 AIDS cases had been
reported by mid 1992, has been the worst affected western country, largely be-
cause the epidemic began earlier in the US In 1990, WHO estimated that one
in every 75 males and one in every 700 females in the US was infected with
HIV. Numbers of AIDS cases in some English speaking countries are given in
Table 4.8.2.

The enzyme-linked immunosorbent assay (ELISA) test is used to screen
blood samples for antibodies to the HIV virus (rather than the virus itself). It
gives a measured “mean absorbance ratio” for HIV (previously called HTLV)
antibodies. Table 4.6.3 gives the absorbance ratio values for 297 healthy blood
donors and 88 HIV patients. Healthy donors tend to give low ratios but some
are quite high, partly because the test also responds to some other types of
antibody e.g. human leucocyte antigen or HLA (Gastwirth [1987, page 220]).
HIV patients tend to have high ratios but a few give lower values because they
have not been able to mount a strong immune reaction. To use this test in prac-
tice, we need a cutoff value so that those who fall below the value are deemed
to have tested negatively and those above to have tested positively. Any such
cutoff will involve misclassifying some people without HIV as having a positive
HIV test (which will be a huge emotional shock), and some people with HIV as
having a negative HIV test (with consequences to their own health, the health
of people about them, the integrity of the blood bank, . . . ). Using a cutoff ratio
of 3 we find that of the healthy people21 (Table 4.6.3), 275/297 = 0.926 test
negatively (22 false positives) and for HIV patients 86/88 = 0.98 test positively
(2 false negatives). It should be noted that the false negative rate may be an
undercount.22 Better results than these have been obtained with the multiple
use of ELISA (Gastwirth, 1987 page 236) and with modern commercial versions
of the test. The proportions given above are only rough estimates from small

21In the medical and biostatistical literatures, the probability of correctly diagnosing a “sick”
individual as “sick” is called the sensitivity of a test, while the probability of correctly

diagnosing that a “healthy” individual does not have the condition of interest is called the

specificity of that test.
22It appears that the virus takes 6 to 12 weeks to provoke antibody production (TIME , 2

March 1987, page 44). Also, TIME (12 June 1989) reports cases of infected men who had
not produced antibodies for up to 3 years.
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samples. Nevertheless, in what follows we shall use them as if they were true
probabilities.

Hence, pr(Positive | HIV ) = 0.98.

Since for people without HIV, the test is negative with probability 0.926, it is
positive for these people with probability 1 − 0.926 = 0.074. We shall round
this value (as the information is very approximate) and use

pr(Positive | No HIV ) = 0.07.

Table 4.6.3 : Number of Individuals Having a Given Mean
Absorbance Ratio (MAR) in the ELISA for HIV Antibodiesa

MAR Healthy Donor HIV patients

< 2
2 − 2.99

202
73

}
275 0

2

}
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 − 3.99 15 7
4 − 4.99 3 7
5 − 5.99 2 15
6 − 11.99 2 36

12+ 0 21

Total 297 88
aFrom Gastwirth [1987, Table 4].

Suppose now you wish to estimate the proportion, pr(HIV ), of people in your
community with HIV. The appropriate probability tree is given in Fig. 4.6.7.
Unfortunately, to estimate the proportion with HIV, you cannot just sample
people and use the proportion testing positively as an estimate. Suppose, for
the sake of exposition, that 1% of people have HIV. In the discussion which
follows, we make use of the numerical equivalence between proportions of a
population and probabilities for a randomly chosen individual (Section 4.4.5).
From the tree, we have

pr(Positive) = pr(HIV )× 0.98 + (1− pr(HIV ))× 0.07 . (1)

Suppose, for example, that 1% of people have HIV, i.e. pr(HIV ) = 0.01. Then,
equation (1) gives pr(Positive) = 0.079, which tells us that approximately 8%
will test positively. Under these circumstances, the large majority of the people
in any sample who test positively will not in fact have HIV! They are so-called
“false positives”.
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pr ( HIV )
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Figure 4.6.7 : Probability tree for HIV testing.

In reality, pr(HIV ), the proportion of people with HIV, will be unknown.
It turns out that we can use equation (1) above to obtain a good estimate
of the unknown value of pr(HIV ) as follows. First, we can take a sample to
get a good estimate of the proportion of people in the community who would
test positively. We then replace pr(Positive) in (1) by its sample estimate and
solve23 for pr(HIV ). Suppose that 9% of your sample tests positively, then

0.09 ' pr(HIV )× 0.98 + (1− pr(HIV ))× 0.07,

pr(HIV ) ' 0.09− 0.07
0.98− 0.07

= 0.022.

which gives

Thus if 9% of the sample tested positively we would estimate that only 2% of
the population was actually infected by HIV.24

Exercises on Section 4.6.3
1. Referring to Example 4.6.6, what is the probability that

(a) both balls are white,
(b) the first is red and the second is white, and
( c ) they are of different colors?

2. In NZ, 3.24% of Europeans and 1.77% of Maori have type AB blood. A
blood bank in a district where the population is 85% European and 15%
Maori wants to know how much AB blood to stock. What percentage of
people in the district have AB blood?

3. 27% of the North Korean workforce works in the service sector of the econ-
omy compared with 52% of the South Korean workforce (TIME , 2 July

23Gastwirth [1987] discusses the statistical errors associated with such estimates.
24The same methodology can be used with other imperfect test procedures, e.g. to estimate

the proportion of people who are lying using the lie detector test, the proportion of job

applicants who actually have sufficient skills to do the job given they are selected on the
basis of their scores on a test given to all applicants, the proportions of people on drugs from

drug screening programs.
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1990). Now 62.5% of the population of the Korean peninsula lives in South
Korea; the rest live in the North. We shall assume that the workforce of
Korea is divided in the same proportions. What percentage of the entire
workforce on the Korean peninsula works in the service sector?

4. The chances of a child being left-handed are 1 in 2 if both parents are left-
handed, 1 in 6 if one parent is left-handed and 1 in 16 if neither parent is
left-handed (NZ Herald , 5 January 1991). Suppose that of couples having
children, in 2% both father and mother are left-handed, in 20% one is a left-
handed and in the rest, neither is a left-handed. What is the probability of
a randomly chosen child being a left-handed?

*4.6.4 Generalized multiplication rule25

The multiplication rule can be extended to more than two events. For ex-
ample, applying the rule successively to the pairs of events A1 ∩ A2 and A3,
and then A1 and A2, gives us

pr(A1 ∩A2 ∩A3) = pr(A1 ∩A2) pr(A3 | A1 ∩A2)

= pr(A1) pr(A2 | A1) pr(A3 | A1 ∩A2).

This rule is useful for finding the probability of the joint occurrence of A1, A2

and A3 when we are given pr(A1) and the conditional probabilities pr(A2 | A1)
and pr(A3 | A1 ∩A2). The latter probability is the probability that A3 occurs,
given that both A1 and A2 have occurred. What events are labeled A1, A2,
or A3 (and thus the order in which the conditioning is used) is arbitrary. In
practice the order used is determined by the sort of conditional probability
information you have. Quite often, the order used is the order that the events
occur in time (as we see by the following example).

Example 4.6.8. Three balls are drawn without replacement from a box with
w white balls and r red balls. What is the probability of getting the sequence
white, red, white? The answer is given by

pr(W1 ∩R2 ∩W3) = pr(W1) pr(R2 |W1) pr(W3 |W1 ∩R2)

=
w

w + r
· r

w + r − 1
· w − 1
w + r − 2

.

Tree diagrams can again be used to solve this type of problem involving a
chain of events. We simply add further branches to a figure like Fig. 4.6.3.26

25This topic, which is included for completeness only, is not required elsewhere in this book.
26Note that if the conditional probabilities are laid out on a tree following the usual conven-

tion by which the probability written by a line segment is the conditional probability of the

event following given the occurrence of all the events that have appeared before, the gener-

alized multiplication rule is equivalent to rule (i) for trees, namely, the probability that all

events represented along a path occur is obtained by multiplying all the probabilities along
that path.
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The formula for the extension of the multiplication rule to an arbitrary num-
ber of events follows the pattern above, namely of introducing a new event
each time and conditioning upon every event that has been used before. Thus

pr(A1 ∩A2 ∩ . . . An) = pr(A1) pr(A2 | A1) pr(A3 | A1 ∩A2) . . .

pr(An | A1 ∩A2 ∩ . . . ∩An−1).

Quiz on Section 4.6
1. In pr(A | B), how should the symbol “|” be read? (Section 4.6.1)

2. Give an example where A and B are two events with pr(A) 6= 0 but pr(A | B) = 0.

(Section 4.6.1)

3. If event A always occurs when B occurs, what can you say about pr(A | B)? (Section

4.6.1)

4. When drawing a probability tree for a particular problem, how do you know what events

to use for the first fan of branches and which to use for the subsequent fans? What
probability do you use to label a line segment?
How do you find the probability that all events along a given branch occur?
How do you find the probability that a particular event occurs? (Section 4.6.3)

5. Describe in words the generalized multiplication rule. (Section 4.6.4)

4.7 Statistical Independence

4.7.1 Two events
We have seen (e.g. Example 4.6.3) that our assessment of the chances that an

event occurs can change drastically depending upon the information we have
about other events. In general, pr(A | B) and pr(A) are different. However,
if there is no change, i.e. pr(A | B) = pr(A), then knowing whether B has
occurred gives no new information about the chances of A occurring. We then
say that A and B are statistically independent and we have the following
definition:

Events A and B are statistically independent if
pr(A | B) = pr(A).

In this case, the multiplication formula pr(A ∩B) = pr(B) pr(A | B) becomes
pr(A ∩B) = pr(A) pr(B) and we take this as our working rule.

IfA andB are statistically independent, then
pr(A ∩B) = pr(A) pr(B).

From the working rule we find that we also have pr(B | A) = pr(B) so that
it doesn’t matter whether our definition of independence is given in terms of
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pr(A | B) or pr(B | A): if A is independent of B, then B is also independent
of A. Our main use of the working rule is to calculate pr(A ∩ B) when we
know that A and B are independent. It can also be used to check for statistical
independence in a probability model by checking whether the formula works
(see Example 4.7.2 to follow).

Unfortunately, it is only possible to establish statistical independence the-
oretically in rather trivial models. To establish that events are exactly inde-
pendent in a more complex setting by doing an experiment and collecting data
would require an infinite amount of data. In most statistical modeling of the
real world, independence is assumed when it seems reasonable to do so on the
basis of subject-matter knowledge or intuition. The notion of physical indepen-
dence gives one way of thinking about this important modeling issue. Events
are physically independent if there is no physical way in which the outcome of
one event can influence the outcome of the other. Under any sensible proba-
bility model, physically independent events will be statistically independent.

Note: If A and B are independent, then so are27 A and B, A and B, A and B.
This makes intuitive sense for physically independent experiments. Suppose A
can occur in experiment 1 and B in experiment 2. If the two experiments are
physically independent, then the occurrence or non-occurrence of A will not
affect the occurrence or non-occurrence of B.

Example 4.7.1 According to one study, 30% of Black Americans have type A
blood and 26% have the genetic marker PGM 1–2. Now if these characteristics
appear independently, and there is evidence that they do, then the probability
that a Black American has both is

pr(Type A and PGM 1–2) = pr(Type A)× pr(PGM 1–2) (as indep.)
= 0.3× 0.26 = 0.078.

The probability that a black American has Type A blood but does not have
PGM 1–2 is

pr(Type A and PGM 1–2) = pr(Type A)× pr(PGM 1–2) (as indep.)
= 0.3× 0.74 = 0.222.

Example 4.7.2 Suppose we toss a coin twice, so that S = {HH,HT, TH, TT}.
Let

A = “at least one head” = {HH,HT, TH}
B = “at least one tail” = {HT, TH, TT}.

Assuming equally-likely outcomes, we have pr(A) = 3
4 and pr(B) = 3

4 . How-
ever, the probability that both events occur is

pr(A ∩B) = pr({HT, TH}) = 1
2 6= pr(A)× pr(B).

27These can be proved formally using the probability rules.
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Thus the events A and B are not independent. However, let

C = “head at first toss” = {HH,HT}
D = “head at second toss” = {HH,TH}.

Now pr(C) = pr(D) = 2
4 = 1

2 and

pr(C ∩D) = pr({HH}) = 1
4 = pr(C)× pr(D).

Thus, under the assumption of equally likely outcomes, these two events are
independent, as we would expect from physical intuition. It is reassuring that
the model assuming equally-likely outcomes is providing sensible answers.

Example 4.7.3 We look again at Example 4.6.5 in which two balls are drawn
one at a time from a box of 4 white and 2 red balls. Suppose this time that the
balls are drawn at random with replacement. Because the first ball is returned
before the second draw is made, the outcome of the first draw no longer changes
the composition of balls in the urn and thus has no influence on the outcome of
the second draw, i.e. they are physically independent.28 Because the events are
physically independent, they are also statistically independent implying that
the probabilities on the second draw are not affected by what happened on the
first draw, e.g. pr(W2 |W1) = pr(W2 | R1) = pr(W2). You can check that these
probabilities are in fact all identical here and equal here to 4

6 by reasoning from
the physical situation (note that pr(W1) = 4

6 as well).

We can still use tree diagrams with independent events. In fact they are
simpler to work with because the conditional probabilities are the same as
unconditional probabilities under independence. Thus, we can just use un-
conditional probabilities to label the tree. The rules for using the tree are
unchanged.

Example 4.7.3 cont. This is illustrated in Fig 4.7.1 which depicts the situ-
ation in Example 4.7.3. For this example, as the events are independent,

pr(W1 ∩R2) = pr(W1) pr(R2) =
4
6
× 2

6
=

8
36
.

The probability of obtaining one ball of either color is

pr(W1)pr(R2) + pr(R1)pr(W2) =
4
6
· 2
6

+
2
6
· 4
6

=
16
36
.

28We use the same notation as in Example 4.6.6, i.e. W1 and W2 represent the events “first
ball is white” and “second ball is white” respectively, etc.
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Figure 4.7.1 : Probability tree for Example 4.7.3.

Exercises on Section 4.7.1
1. According to a study on 3, 433 women conducted by the Alan Guttmacher

Institute in the US (Globe and Mail , 7 August 1989), 6% of women on the
contraceptive pill can expect to become pregnant in the first year compared
with 14% of women who do not use the pill but whose partners use condoms.
What are the chances of the woman becoming pregnant in the first year if
she is on the pill and he uses condoms? (Assume independence. Is this a
reasonable assumption?)

2. According to a poll conducted for TIME (29 January 1991) 42% of American
gun owners keep their guns in their bedrooms and 12% keep them loaded all
of the time. Assuming independence, what percentage of gun owners keep
a loaded gun in their bedroom?

3. White North Americans in California have blood phenotypes A,B,O and
AB with probabilities 0.41, 0.11, 0.45 and 0.03 respectively. If two Whites
are chosen at random, what is the probability that they have the same
phenotypes? Why may you assume that the two are independent?

4. Consider the sexes of children in a 3-child family so that S = {GGG,GGB,
GBG,BGG,GBB,BGB,BBG,BBB}. Assume equally likely outcomes
and imitate the working of Example 4.7.2 to show that:
(a) the events A = “eldest child is a girl” and B = “at least one child of

each sex”are independent; and
(b) the events B above and C = “at least 2 girls” are also independent.
( c ) Consider now a 4-child family. Let the events B and C be described

by the same verbal phrases as in (a) and (b). Show that this time B
and C are not independent!

4.7.2 Positive and negative association
In humans, independence of characteristics, as in Example 4.7.1, tends to be

the exception rather than the rule. Some things we know tend to go together,
for example blond hair and blue eyes. Someone with blond hair is much more
likely to have blue eyes than someone with brown or black hair. We say the
events “having blond hair” and “having blue eyes” are positively associated.
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Suppose we look at the population in which 30% have blond hair and 25% have
blue eyes. If we assumed independence, we would say that the proportion with
both is

pr(blond hair ∩ blue eyes) = pr(blond hair) pr(blue eyes) = 0.3× 0.25 = 0.075.

Since these events are not independent, we should have used

pr(blond hair ∩ blue eyes) = pr(blond hair) pr(blue eyes | blond hair)
= 0.3× ???.

Now among blond-haired people, the proportion with blue eyes is high, prob-
ably much closer to 80% than 25%. The product 0.3× 0.8 is then much larger
than 0.075. Assuming independence when events are positively associated can
lead to answers that are far too small.

Many human characteristics are negatively associated as well, i.e. if you have
one you are much less likely to have the other. Black hair and blue eyes is one
example. Assuming independence when events are negatively associated leads
to answers which are too big.

*4.7.3 Mutual independence of more than two events
The n events A1, A2, . . . An are mutually independent if

pr(A1 ∩A2 ∩ . . . ∩An) = pr(A1) pr(A2) . . .pr(An),

and the same type of multiplication formula holds for any subcollection of the
events.29 We shall use this result often in Chapter 5 for events like tosses of a
coin which we know are physically independent. However, the formula above
and the independence assumption are frequently abused. Often it is relatively
easy to get information about individual probabilities, e.g. the proportions of
individuals who own their own houses, who believe in abortion, who have a high
intelligence, and who hold strong religious beliefs. To calculate the probability
that all these conditions hold at the same time we need the multiplication rule of
Section 4.6.4. This requires information about conditional probabilities, e.g. the
proportion of strongly religious people among those who have high intelligence
and believe in abortion and own their own house etc. Clearly information on
society broken down to this level is hard to find. What often happens is that, in
the absence of knowledge of the appropriate conditional probabilities, people
assume independence. From the discussion of the previous section, this can
lead to answers that are grossly too small or grossly too large - and we won’t
know! The two case studies which follow the Exercises for this section contain
salutary tales.

29This is stronger than just requiring every pair of events to be independent; i.e. pr(Ai∩Aj) =

pr(Ai) pr(Aj) all i 6= j. If n = 4, the product rule has to hold not only for all four events
but also for any three events and for any two events.
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Exercises on Section 4.7.3
1. In April 1990, Mary Ayala was due to give birth to a baby girl conceived

to serve as a bone marrow donor for her 17 year-old sister Anissa who had
a virulent form of leukemia. Our information came from a TIME magazine
article (5 March 1990, page 41) focusing principally on ethical considerations
involved in the Ayala’s actions. However, the article also discussed some
probability calculations which showed that when they started out on this
course of action, the Ayalas had a slim chance of success. Abe Ayala (the
husband) had a vasectomy 16 years before. The chances of successfully
reversing such a vasectomy were put at 50%. Mary Ayala was 42 and the
chances of a woman aged 40 to 44 conceiving were stated to be 73%. The
chance of siblings of the same parents having matched blood marrow were
quoted as 25% and the chance of a bone-marrow transplant curing leukemia
in this patient was said to be 70%. To be successful, all of these things had
to happen.30

(a) Assuming independence, what were the Alayas’ chances of success?
(b) Which criteria do you think are independent and which are you doubt-

ful about?
2. In 1991, a power failure at an AT&T switching center triggered loss of

telephone service to over 1 million people in New York City and caused
havoc especially with air traffic (TIME , 30 September, 1991). When AT&T
switched to their own power generation equipment, a power surge tripped a
battery powered emergency backup system. This triggered battery-powered
alarms that the backup system had been activated but the alarm systems
audio-sirens did not come on and the visual warnings were not noticed for
over five hours hours. When the batteries ran down the resulting power
failure immediately shut off three huge switches that route telephone calls.
Which of the events “power failure”, “sirens not working”, “visual signals
not noticed”, “batteries ran down” and “routing switches shut off” do you
think are likely to be independent? Which seem to be direct causes and
effects? Which are likely to be related but do not appear to be causes and
effects?

Case Study 4.7.1 People versus Collins
One of the first occasions in which a conviction was obtained in an American

court largely on statistical evidence was the case of “People versus Collins”.
In 1964, Mrs Juanita Brooks was knocked over while walking home with her
shopping basket. When she got up she saw a young woman running away and
found that her purse was missing. The young woman was described as having
blond hair in a pony tail, and as wearing something dark. Another witness,
one John Bass, saw such a woman get into a yellow car driven by a black male
with a beard and mustache. Collins and his wife Janet fitted the description.

30TIME, 23 March 1992 reported a happy ending. The transplant seemed to be a success.
There was no sign of the disease and Anissa was getting married.
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Bass picked out Collins in a line-up but there were problems with the iden-
tification. To help what may have been a weak identification, the prosecutor
called on a college mathematics instructor. This witness explained the product
rule above for probabilities of mutually independent events. The prosecutor
continued by having the mathematical witness apply the product rule to this
case, which he proceeded to do. He assumed the following probabilities (really
relative frequencies here) given in Table 4.7.1 for each of the characteristics.
Using the product rule to obtain the chances that a random couple meets all
the characteristics in the description above, he multiplied the individual prob-
abilities to obtain 1

10 × 1
4 × . . .× 1

1000 = 1 chance in 12 million. The chances of
finding such a couple was so overwhelmingly small that the possibility of the
police finding another couple fitting the description probably never entered the
jurors’ heads. The jury was convinced and the Collins couple were convicted.

Table 4.7.1 : Frequencies Assumed by the Prosecution

Yellow car 1
10 Girl with blond hair 1

3

Man with mustache 1
4 Black man with beard 1

10

Girl with ponytail 1
10 Interracial couple in car 1

1000

In 1968 the Californian Supreme Court threw the verdict out. Some of the
holes in the argument should be clear from our earlier discussions. Some of the
characteristics above are clearly not independent, e.g. man with a mustache
and black man with a beard, since most men with beards also have mustaches.
Furthermore, if you have a “girl with blond hair” and “negro man with beard”
the chance of having an “inter-racial couple” is close to 1 not 1

1000 , so that
from this alone the answer is too small by a factor of about 1000. Also, the
prosecution had presented no evidence to support the values chosen for their
probabilities.

The defense also presented a much more subtle probability argument. The
police found one couple fitting the description so at least one such couple ex-
isted. The defense calculated the conditional probability that two or more such
couples exist given that at least one couple exists. This probability turns out
to be is quite large (about 35%), even using the prosecution’s 1 in 12 million
figure. Thus reasonable doubt that the Collins committed the crime has been
created.31

Case Study 4.7.2 Nuclear reactor safety
Speed [1977] reviewed the use of probability arguments in the Reactor Safety

Study, a major US government study of the safety of nuclear power (see US Gov-
ernment, 1975). This study had come out with estimates like one chance in

31For further information about this case, see Jonakait [1983], Fairley and Mosteller [1974].
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20, 000 per reactor per year of a core meltdown; one chance in a thousand mil-
lion per reactor per year that containment would fail, releasing virtually all the
volatile and gaseous fission products into the atmosphere; one chance in sixteen
million per year of an individual in the US being killed by a reactor accident;
and so on. How reliable were these figures? We won’t go into detailed technical
details but will focus upon some elementary issues.

The calculations were based upon a fault tree analysis, which is a diagram
linking all the things that might go wrong and cause disaster. Hundreds of
probability statements were made about things like the following:

(i) The pump will work when required.
(ii) The operator will turn on the switch when required.
(iii) The safety system is undergoing maintenance when required.
(iv) Under stated conditions a steam explosion will occur.

Among more technical criticisms, Speed [1977] condemned the Reactor Safety
Study on three elementary grounds:

(a) Individual probabilities ascribed to events were based upon little or
no data and were sometimes purely subjective.

(b) There were unfounded assumptions of independence in chains of events
which could cause gross underestimates of the probability.

( c ) Fault tree analysis can only consider the chances of failure from an
anticipated cause. It is possible that an unanticipated cause of failure
may have a reasonably large probability of occurring.

While the study was in Draft form, there was an incident in which the Browns
Ferry plant in Alabama was closed down due to a large electrical fire in the
control room. The Draft had not even considered such contingencies and had
to be modified to include a statement to this effect. The same incident helps
illustrate (b). Reasoning of the following form was used.

Probability
of worst

consequence

Probability
of initiating

event

Probability
of safety
system
failure

Probability
of worst
weather

Probability
of highest

population
density

Note the assumed independence of “initiating event” and “safety system fail-
ure”. However, rather than being independent, some initiating events such as
large scale electrical fires can actually contribute to safety system failure. Other
assumptions were made that people either noticed or did not notice warning
signs on a meter independently . Yet sometimes an event that causes one per-
son not to notice the dial, e.g. a smoke filled room and the panic of a fire, will
cause others not to notice it either. There are therefore positive associations
between events in both of these examples, and, as we know from Section 4.7.2,
assuming independence when there are positive associations can cause gross
underestimates of probabilities. And Speed’s conclusions from all this? “. . .
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it would be nothing short of a miracle if the overall system probabilities ever
bore any relation to reactor experience.”32

The moral of this subsection is that we should be highly suspicious of any
probabilities obtained under independence assumptions unless convincing rea-
sons or data are given to justify the independence.

Quiz on Section 4.7

1. What does it mean for two events A and B to be statistically independent?

2. Why is the working rule under independence, i.e. pr(A∩B) = pr(A)pr(B), just a special

case of the multiplication rule of Section 4.6.2? What two uses do we make of the working

rule? (Section 4.7.1)

3. What do we mean when we say two human characteristics are positively associated?

Negatively associated? (Section 4.7.2)

4. What happens to the calculated pr(A ∩ B) if we treat positively associated events as
independent? If we treat negatively associated events as independent? (Section 4.7.2)

5. Why do people often treat events as independent? When can we trust their answers?
(Section 4.7.3)

6. What is an inherent difficulty with a fault tree for calculating risks? (Case Study 4.7.2)

4.8 Reversing the Order of Conditional Probabilities
Example 4.8.1 Case Study 4.6.2 contained data on the performance of a ver-
sion of the ELISA test used to try to detect HIV33 infection in blood. Suppose
that all residents of a large city are tested and that 1% of people in that city
are actually infected with HIV. On the basis of the information given in Case
Study 4.6.2, approximately 98% people who are infected with HIV test positive
for HIV, while approximately 93% of people who are uninfected test negative.

What is the probability that a randomly chosen person has HIV given that
he or she tested positive? It must be pretty high, right? After all, even though
the test is not perfect, it almost always gives the correct answers. We shall find
that any such intuition has misled us.

The information we have is repeated in Fig. 4.8.1. We have unconditional
information about the probability the person has HIV without reference to
the test (1%). Our information about the test’s performance is conditional on
whether or not the person has HIV. What is new about this example is that in
the probability we want, pr(HIV | Positive), the order of the conditioning is
reversed from that in the available information.

32Speed [1985] considers the “Sizewell B Probabilistic Safety study” a more recent study

that avoids some of the very worst of the abuses of the earlier report. He finds some of the

basic criticisms still apply. Speed [1985] also references some of the literature on this subject.
33Recall from Case Study 4.6.2 that HIV is the virus that causes AIDS.
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pr ( HIV )

1 - pr  ( HIV
 )

pr(Pos | H  ) = 0.98

pr(Pos | H  ) = 0.07

Pos

Neg

Yes
(H)

No
(H)

Pos

Neg

Actually
have HIV?

Test
Result

Path

1

2

3
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Figure 4.8.1 : Probability tree for HIV testing.

Since the required conditional probability is not immediately available to us,
we expand it out using the conditional probability formula,

pr(HIV | Positive) =
pr(HIV ∩ Positive)

pr(Positive)
.

Having done this, we see that we everything we need can be read off the tree
diagram (using the familiar rules of Section 4.6.3). No new theory is needed!
The numerator comes from Path 1 of the tree, whereas we get the denominator
by adding all paths for which the event Positive occurs, namely 1 and 3. Thus

pr(HIV | Positive) =
pr(HIV)× 0.98

pr(HIV)× 0.98 + (1− pr (HIV))× 0.07
.

In the scenario above pr(HIV) = 0.01. If we substitute this value into the
equation, we obtain

pr(HIV | Positive) ≈ 0.12 .

The chances that a person who has tested positive really has the disease are not
large. At approximately one chance in 8, they are actually moderately small.34

We shall discuss the practical implications of calculations such as this in Case
Study 4.8.1. In the meantime, we concentrate on the calculations themselves.
The method used in Example 4.8.1 also enables us to solve more complicated
examples involving larger partitions of the sample space.

Example 4.8.2 Let us revisit the contraceptive failure problem of Exam-
ple 4.6.7 in Section 4.6.3 where we had information on the proportions of
women using the different methods of contraception, i.e. information of the

34Many people find results like this so counter-intuitive that they doubt the arguments. If

that is the case for you, try this less technical argument. Suppose we had 10,000 people. We

would expect 100 to have HIV (1%) and of this 100, 98 (98%) to test positively. We would

expect 9,900 people out of the 10,000 (99%) not to have HIV and of these 9,900, we would

expect 693 (7%) to test positively. This gives us 791 positive tests of which only 98, or 12%
belong to people with HIV.
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form pr(Method), and also on the failure rates of each method, i.e. of the
form pr(Failure | Method).

One of the types of method was barrier methods. Suppose we wanted to
obtain the proportion of just those experiencing contraceptive failure who were
using barrier methods, i.e. pr(Barrier | Failure). Since the order of conditioning
desired is the reverse of the order of conditioning in the available information,
we expand it out using the conditional probability formula,

pr(Barrier | Failure) =
pr(Barrier ∩ Failure)

pr(Failure)

All of the information on the right hand side can be obtained from the tree
in Fig. 4.6.4. The numerator is obtained from Path 5 in which both Barrier
and Failure occur giving pr(Barrier ∩ Failure) = 0.24 × 0.14. We can find
pr(Failure) by adding the probabilities of all paths containing Failure. We did
this in Example 4.6.7 and found that pr(Failure) = 0.0592. Thus

pr(Barrier | Failure) =
pr(Barrier ∩ Failure)

pr(Failure)
=

0.24× 0.14
0.0592

= 0.568 .

Almost 60% of those with unwanted pregnancies relied primarily on barrier
methods of contraception.

In the above example, we have used the tree diagrams to find probabilities.
However, another approach is possible. As an exercise, the reader might like
to try and construct Table 4.8.1.

Table 4.8.1 : Table Constructed from the Data in Example 4.6.7

Steril. Oral Barrier IUD Sperm. Total
Failure (F) 0 .016 .0336 .0018 .0078 .0592
Success (S) .38 .304 .2064 .0282 .0222 .9408
Total .38 .320 .2400 .0300 .0300 1.0000

The entry in the first row and third column of Table 4.8.1, namely the prob-
ability pr(Barrier ∩ Failure), is given above. This number can be arrived at
intuitively by noting that the 14% failure rate applies to 24% of the women
giving 0.14× 0.24 = 0.0336. The remaining entries follow in a similar fashion.
Adding up the numbers in the first row gives pr(F ) = 0.0592, the answer to
Example 4.6.7. Furthermore, pr(Barrier | Failure) can be found by dividing
the entry in the table (0.0336) by the first row sum (.0592) to get 0.568, the
answer to Example 4.8.2. We have demonstrated that the construction of such
tables provides an alternative way of finding various probabilities, including
conditional probabilities.
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Bayes Theorem

(i) pr(B | A) =
pr(A | B)pr(B)

pr(A)
=

pr(A | B) pr(B)
pr(A | B) pr(B) + pr(A | B) pr(B)

.

(ii) If C1, C2, . . . , Ck is a partition of S

pr(Ci | A) =
pr(A | Ci)pr(Ci)

pr(A)
=

pr(A | Ci) pr(Ci)
k∑
j=1

pr(A | Cj) pr(Cj)
.

Note that item(i) below is a special case of item (ii) in which the partition used
consists the two events B and B.
[Proof of (ii): That the numerator of the righthand-side gives pr(Ci∩A) follows
from the multiplication rule; note that pr(Ci ∩ A) is identical to
pr(A ∩ Ci). The fact that the denominator sums to give pr(A) is the alter-
native expression of the Partition Theorem given in Section 4.6.3].

The steps we used in the examples to find pr(Event 1 | Event 2) when the or-
der of conditioning required is “reversed” from that in the available information
were:
1. Put the relevant available information on a tree diagram.

2. Expand pr(Event 1 | Event 2) =
pr(Event 1 ∩ Event 2)

pr(Event 2)
.

3. Obtain the required probabilities from the tree.

For this method to work, it is critical that the first set of branches in the tree
forms a partition of the sample space (in the case of probabilities) or population
of interest (in the case of proportions). Equivalently, the probabilities on the
first fan of branches must add to unity.

We saw in Example 4.8.2 above that such “reversed” probabilities can also
be found by constructing a two-way table of probabilities.

*Case Study 4.8.1 AIDS, Lie detectors and Job Competency
The ELISA test for HIV infection was described in Case Study 4.6.2 and

further discussed in Example 4.8.1. It correctly classifies the vast majority of
infected people as having HIV. It also correctly classifies the vast majority of
uninfected people as not having HIV. And yet Example 4.8.1 showed a scenario
in which the majority of people testing positive for HIV were in fact uninfected.

This sort of “good-but-imperfect-test” situation is widespread. It applies
to large numbers of medical screening procedures (diabetes, cervical cancer,
breast cancer, ...).35 It applies to polygraph lie detector tests (some people
who are not lying show the physiological symptoms interpreted as a sign of
lying, while some people who are lying do not). It applies to psychological
and intellectual tests performed to judge the suitability of job applicants (some

35However, a screening test is designed to identify a group at increased risk of a condition.
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people who are capable of doing the job well will fail the tests, while some who
are not will pass the tests). It can also apply to the testing of urine or blood
samples to detect drug use. In this study we shall discuss some important
problems associated with using and interpreting the results of such tests. The
vehicle for our discussion is the ELISA test for HIV, but essentially the same
considerations apply to all such tests.

There has been some popular pressure for mass screening for HIV. However,
as we know from Case Study 4.6.2 and Example 4.8.1, with any such screening,
there will be large numbers of people without HIV who turn up a positive
ELISA test. This leaves you with the huge practical problem of identifying
the minority of these people who are actually infected. Let us investigate the
extent of the problem.

From Example 4.8.1 (and Fig. 4.8.1)

pr(HIV | Positive)

=
pr(HIV) pr(Positive | HIV)

pr(HIV) pr(Positive | HIV) + pr (No HIV) pr(Positive | No HIV)

=
pr(HIV)× 0.98

pr(HIV)× 0.98 + (1− pr (HIV))× 0.07
. (1)

In this context, pr(HIV) is the proportion of people in the population be-
ing screened who actually have HIV. Table 4.8.2 gives estimated pr(HIV)
values for several different countries (column 4) and the resulting value of
pr(HIV | Positive), the proportion of those testing positive who really have
HIV (final column).

Table 4.8.2 : Proportions Infected with HIV

Country No. AIDSa Populationb pr(HIV )c pr(HIV | Positive)
Cases (millions)

United States 218,301 252.7 0.00864 0.109
Canada 6,116 26.7 0.00229 0.031
Australia 3,238 16.8 0.00193 0.026
New Zealand 323 3.4 0.00095 0.013
United Kingdom 5,451 57.3 0.00095 0.013
Ireland 142 3.6 0.00039 0.005
aSource: AIDS - New Zealand, November 1992.
b1991 estimates – except for Ireland for which May 1990 figures are given.
cProportion of population infected by HIV. These are very rough. We have assumed that the proportion

of HIV infected people is 10 times larger than the proportion of AIDS cases. This is the approximate
relationship between the number of US cases and the US Centers for Disease Control’s estimate of the
number of HIV infected Americans in 1990.

The most extreme case in Table 4.8.2 is Ireland. If the Irish Government had
decided to screen the total population of 3.6 million people for HIV in 1990,
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on the figures above, roughly 250, 000 (7%) would have tested positively and
of these only about 1250 (0.5% of the positives) would have HIV. How do we
tell these 1250 people apart from the rest of the 250, 000? In the case of HIV
there is another more expensive and more specific test called the Western Blot
test which could be used.36 So, any screening program would have to include
funding for both ELISA tests for everyone and Western Blot tests for a quarter
of a million people.37

Although the value of pr(HIV | Positive) in Table 4.8.2 varies with the pro-
portion of people with HIV in the population to some extent, all of the entries
in the table are small. We don’t want to leave you with the reverse misap-
prehension that pr(HIV | Positive) is always small. Among intravenous drug
users in New York in 1988, it was estimated that 86% had HIV (NZ Herald ,
17 November 1988). Using pr(HIV) = 0.86 in equation (1) above, we now find
that pr(Positive) = 0.853 and pr(HIV | Positive) = 0.988. If all New York
drug addicts had been screened almost every person testing positively (98.8%)
would have had HIV.

The type of problem we see in Table 4.8.2, where the majority of those
that would test positive would be false positives, is very common in screening
for relatively rare medical conditions. Similar behavior could be expected in
testing for drug use among a population in which drug use is rare, or using
lie detector tests on a group of people in which the vast majority had told the
truth. An alternative strategy, as indicated by the results for New York drug
addicts, is to try to identify high risk subpopulations and only screen those.
With medical screening, particularly in an area as sensitive as AIDS, this can
be political dynamite.

So far, we have been using pr(HIV | Positive) to think about the proportion
of those testing positive in a screened population actually have HIV. But what
does pr(HIV | Positive) mean for an individual?

Let’s get personal and imagine that you, the reader, have just tested posi-
tive. Clearly, this would be a major trauma for you. TIME (2 March 1988)
quoted a health professional as saying, “The test tends to rip people’s lives
apart”. The Economist (4 July 1992) told a story of a young American having
recently committed suicide on learning that he had tested positive for HIV.
“...he believed his chances of carrying the virus was 96%. It was 10%”.38 So,
what is pr(HIV | Positive) for me, i.e. what is the probability that I have HIV
given that I have just tested positive on an ELISA test?

36In medical terms (see footnote, Case Study 4.6.2) the Western blot is more specific but not

as sensitive as Elisa.
37Such testing is not cheap! The State of Illinois introduced screening as a condition for a

marriage license in 1988. In the first 11 months 150, 000 people were screened at a cost of

US$5.5 million (23 were infected). Many other states now do similar screening.
38It is surprising that someone was given the results of a positive result on a single test. In

NZ, people are not told that they have tested positive unless they have also tested positive
on a second ELISA test and on a Western blot test.
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We have to think in terms of being a random representative of some popula-
tion. We saw above that the value of pr(HIV | Positive) depends critically on
the value of pr(HIV) for the population the individual is sampled from. None
of us can usefully be thought of as a randomly selected individual from our
own country as far as HIV is concerned because we know that HIV is much
more prevalent in some sections of the population than others. To obtain a
value of pr(HIV | Positive) for oneself, a value for pr(HIV) is required that
gives the proportion of people who have HIV among people as much as possible
like oneself with respect to the known risk factors for AIDS. If you are a New
York drug addict who shares needles, a positive ELISA test is fairly conclusive.
If you have always lived in a monogamous sexual relationship, believe your
partner to have done the same, don’t share needles, and didn’t have a blood
transfusion prior to the testing of the blood supply, a positive ELISA test is
almost certainly a false positive.

Exercises on Section 4.8
1. Suppose, as above, the ELISA test gave a positive result on a “healthy”

individual with probability 0.07 and a positive result on a HIV carrier with
probability 0.98. Suppose we did the test twice and concluded the person
had HIV only if both tests were positive.
(a) Assuming test results are independent, what is the probability of

saying: (i) a healthy person has HIV?, (ii) a person with HIV does
not have the disease?

(b) Repeated testing looks like a way of dramatically cutting down the
false positive rate. However in Case Study 4.6.2 it was stated that the
test reacts to other antibodies besides HIV. What are the consequences
of this to the independence assumption?

2. If you only wanted to use the ELISA test to protect the blood banks, what
sort of cutoff MAR value would you use from Table 4.6.3? Why? [Think of
the consequences of the two types of wrong decision.]

3. 43% of the North Korean workforce works in agriculture versus 21% of
the South Korean laborforce (TIME , 2 July 1990). 34.8% of the Korean
workforce lives in the North and the rest in the South. By constructing a
two-way table of probabilities, find the proportion of Korean agricultural
workers that live in the North.

Many of the Review Exercises for this chapter involve reversing conditional
probabilities.

4.9 Summary
From Chapter 4, we hope you absorb:
(a) Some basic ideas about probabilities, such as: how probabilities arise; the
idea of a simple probability model; the important (but very different) notions
of mutually exclusive events and (statistically) independent events; the idea of



62 Probability

assessments of probabilities depending upon the information available and a
formalization of this through conditional probability.

(b) Some facility with manipulating probabilities. There are some standard
types of probability manipulation that will be used repeatedly, particularly
in the following chapter. The adding of probabilities of mutually exclusive
events (to get the probability that one of them occurs) and multiplying the
probabilities of independent events (to get the probability that all of them
occur), in particular, fall into this class. Also some problems can best be
solved by constructing two-way tables of counts or proportions.

You will find that many of the very simple examples that you have used and
thought about in this chapter (e.g. tossing coins, or sampling colored balls)
will become models (analogies) which will enable you to solve some practically
important problems in the following chapters. Conditional probabilities play
no further part in the book.39 They are included here because of their im-
portance in thinking about a number of very important practical problems (as
illustrated in the Case Studies) and to combat the widespread misuse of proba-
bility arguments, particularly those based upon assumptions of independence.

This summary has been divided into two sections, the first dealing with the
main concepts or ideas about probability, and the second dealing with formulae
for calculating and manipulating probabilities.

4.9.1 Summary of concepts
1. The probabilities people quote come from 3 main sources:

(i) models (idealizations like the notion of equally likely outcomes which
suggest probabilities by symmetry).

(ii) data (e.g. relative frequencies with which the event has occurred in
the past).

(iii) subjective feelings representing a degree of belief.

2. A simple probability model consists of a sample space and a probability
distribution (definitions to follow).

3. A sample space, S, for a random experiment is the set of all possible
outcomes of the experiment.

4. A list of numbers p1, p2, . . . is a probability distribution for a discrete
sample space S = {s1, s2, s3, . . . } provided (i) all of the pi’s lie between 0
and 1, and (ii), they add to 1.
According to the probability model, pi is the probability that outcome si
occurs. We write pi = pr(si).

5. An event is a collection of outcomes.

39They do provide an alternate means of answering many of the problems in the next chapter,
however.
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An event occurs if any outcome making up that event occurs.

6. The probability of event A can be obtained by adding up the probabili-
ties of all the outcomes in A.

7. If all outcomes are equally likely,

pr(A) =
Number of outcomes in A
Total number of outcomes

8. The complement of an event A, denoted A, occurs if A does not occur.

9. It is useful to represent events diagrammatically using so-called Venn di-
agrams.

10. Unions of events: A ∪ B contains all outcomes in A or B (including those
in both). It occurs if at least one of A or B occurs.

11. Intersections of events: A ∩ B contains all outcomes which are in both
A and B. It occurs only if both A and B occur.

12. Mutually exclusive events cannot occur at the same time.

13. A partition is a way of dividing up a sample space into separate pieces.
Events C1, C2, . . . , Ck form a partition of the sample space if they are
mutually exclusive and collectively account for all possible outcomes.

14. The (conditional) probability of A occurring given that B occurs is given
by

pr(A | B) =
pr(A ∩B)

pr(B)

15. Events A and B are (statistically) independent if knowing whether B
has occurred gives no new information about the chances of A occurring,
i.e. if pr(A | B) = pr(A).

16. If events are physically independent, then, under any sensible probability
model, they are also statistically independent.

17. Assuming that events are independent when in reality they are not can
often lead to answers that are grossly too big or grossly too small.

4.9.2 Summary of useful formulae

A. For discrete sample spaces, pr(A) can be obtained by adding the probabil-
ities of all outcomes in A.

B. For equally likely outcomes in a finite sample space

pr(A) =
number of outcomes in A
total number of outcomes

.
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C. General Probability Rules.40

1. pr(S) = 1, pr(∅) = 0.

2. pr(A) = 1− pr(A).

3. pr(A ∪B) = pr(A) + pr(B)− pr(A ∩B)(
if A and B are mutually exclusive pr(A ∩B) = 0

)
.

4. (a) pr(A) = pr(A ∩B) + pr(A ∩B)
= pr(B) pr(A | B) + pr(B) pr(A | B).

(b) If C1, . . . , Ck form a partition

pr(A) =
k∑
i=1

pr(A ∩ Ci) =
k∑
i=1

pr(Ci) pr(A | Ci).

D. Conditional Probability.
1. Definition

pr(A | B) =
pr(A ∩B)

pr(B)
.

2. Multiplication formula

pr(A ∩B) = pr(A) pr(B | A) = pr(B) pr(A | B).

pr(A1 ∩A2 ∩ . . .∩An) = pr(A1) pr(A2 | A1) . . .pr(An | A1 ∩ . . .∩An−1).

E. Independence
If A1, . . . , An are mutually independent, it follows that

pr(A1 ∩A2 ∩ . . . ∩An) = pr(A1) pr(A2) . . .pr(An).

Review Exercises 3
1. Give a suitable sample space S for each of the following random experi-

ments. (Note that there may be more than one answer for S.)
(a) A light bulb is chosen at random from a batch of bulbs. It either

works or it doesn’t.
(b) A student is selected at random from your class and their number of

siblings (brothers and sisters) is recorded.
( c ) A person is interviewed on the street and the number of their parents

that are alive is noted as part of a questionnaire.
(d) You have a thermometer hanging at home and you read the temper-

ature at a given time every day.

40As demonstrated in the chapter, a diagram or table will often give you the probabilities
that you need without you having to remember or look up these formulae.
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( e ) One lunchtime you go and count the number of people in the queue
at the student cafeteria.

( f ) A member of your class of 10 students is chosen at random and their
height is measured.

(g) A randomly selected student is interviewed and they are asked what
form of transport they used to get to the university that day.

2. Let S = {s1, s2, s3}.
(a) Determine whether or not S is a sample space in the following cases:

( i ) s1 = “My alarm goes off and I get to my lecture on time”.
s2 = “My alarm doesn’t go off and I get to my lecture”.
s3 = “I miss my lecture or arrive late”.

(ii) s1 = “I catch my bus and get to my lecture on time”.
s2 = “I miss my bus and miss my lecture.”
s3 = “I get to my lecture on time”.

(b) Describe a random experiment underlying this exercise.

3. According to the 1991 NZ census, a randomly selected dwelling would have
1, 2, ... occupants with probabilities given by the following table:

No. of occupants 1 2 3 4 5 6 or more

Probability .21 .32 .17 .16 — .05

Source: Statistics NZ, 1994.

Obtain the missing probability corresponding to 5 occupants.

4. An experiment has two outcomes A and A. If A is three times as likely to
occur as A, what is pr(A)?

5. Suppose we roll a normal six-sided die and observe the score. The sample
space for this random experiment is S = {1, 2, 3, 4, 5, 6}. Define the events
A = {1, 4}, B = {6}, C = {1, 2, 3} and D = {2, 3, 5}.
(a) What is the event E that the score is an odd number.
(b) What is the complement of D?
( c ) Which of the events A to E form a partition of S?
(d) Which of the events B to E are mutually exclusive to A?

( e ) Find the following events: (i) A ∪ C (ii) C ∩D (iii) C ∩D.

6. Craps is a dice game played in casinos, among other places. If you see
people rolling dice along a floor in a movie, the game being played is
probably craps. The player rolling the dice is called the “shooter”. The
shooter plays by rolling a pair of dice. The score for each roll is the sum
of uppermost faces of the two dice. Initially the shooter rolls the pair of
dice. If the shooter rolls a “natural”, i.e. scores a 7 or an 11 the shooter
wins outright. If the shooter throws “craps”, i.e. a 2, 3 or 12 he or she
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loses outright. Suppose the shooter throws any other score on the first
roll, for example a 5. This score is called the shooter’s “point”. He or
she continues to roll again and again until either this score is repeated (in
which case the shooter wins or makes “point”) or a seven is thrown (in
which case the shooter loses).
We shall lead you through the calculation of the probability that the
shooter wins in a way that revises many of the ideas in the chapter.
(a) Write down the usual sample space for rolling a pair of dice once.
(b) In terms of the outcomes in this sample space write down the follow-

ing events: (i) A7 = “the total score is 7”, (ii) N = “a natural is
thrown”, and (iii) C = “the rolling results in craps”.

( c ) Write down the probabilities of the events in (b) and also the prob-
ability of F = “continue rolling”.

(d) State why {A7, N, F, C} does not form a sample space for the two
dice experiment and modify it so that it does.

Now let us start doing the calculations. S = {2, 3, . . . , 12} forms a sample
space for the experiment formed from just using the total score on the
initial roll of the two dice.
( e ) Write down the probability distribution corresponding to this sample

space.
Let Ai be the event that the total score from that first roll of the pair of
dice is i, for i = 2, 3, . . . , 12 (e.g. A8 is the event that the score from the
first roll, or point, is 8).
( f ) We now want to calculate all the probabilities of the form pr(“shooter

wins” given that the initial score was i), i.e. pr(“shooter wins”| Ai).
( i ) For i = 2, 3, 7, 11 and 12 we can write down the probabilities

immediately from the description of the game without doing
any calculations. Write down these 5 probabilities.

(ii) Suppose the shooter’s point was 4. There are 3 outcomes giving
rise to a total score of four and 6 outcomes giving rise to a score
of seven. It can be shown that the chances of another four
turning up before a seven are in the same ratio, i.e. 3 : 6. Thus
the probability of a 4 turning up before a 7 is 3/(3 + 6) = 3/9.
Thus

pr(“shooter wins” | A4) = 3/9.

Using the same idea write down all the remaining conditional
probabilities P (“shooter wins” | Ai).
[Note: These probabilities are important because the gamblers are free to bet at any

stage of the game on whether the shooter will make point.]
(g) By noting that the events Ai define a partition of possible games,

calculate the probability that the shooter wins?
(h) Suppose the shooter is “hot”, e.g. has won eight straight games.

What is the probability that the shooter wins the next game? Why?
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[Epilogue: According to Larsen and Marx [1986, page 72], in 1980 a man walked into

the Horseshoe Club in downtown Las Vegas carrying two suitcases. One was empty

and the other contained US$770, 000 in $100 bills. He went over to a craps table and

bet the lot against the shooter. The woman who was shooting rolled a 6 then a 9 and

then a 7 (and lost!). The man then left the casino after visiting the cashier with both

suitcases full of money. As of 1986, this was the largest single bet ever recorded in Las

Vegas. A note of caution – he had an almost 50 : 50 chance of walking out with two

empty suitcases.]

7. One of the biggest problems with conducting a mail survey is the poor
response rate. In an effort to reduce nonresponse, several different tech-
niques for formatting questionnaires have been proposed. An experiment
was conducted to study the effect of the questionnaire layout and page size
on response in a mail survey. A group of students at a Dutch university
were questioned about their attitudes towards suicide. Four different types
of questionnaire formats were used. The results of the survey are shown
in the Table 1.

Table 1 : Questionnaire Formatsa

Format Responses Nonresponses Total

Typewritten (small page) 86 57 143
Typewritten (large page) 191 97 288
Typeset (small page) 72 69 141
Typeset (large page) 192 92 284

Total 541 315 856
aSource: Jansen [1985].

(a) What proportion of the sample responded to the questionnaire?
(b) What proportion of the sample received the typeset (small page)

version?
( c ) What proportion of those who received a typeset (large page) version

actually responded to the questionnaire?
(d) What proportion of the sample received a typeset (large page) ques-

tionnaire and responded?
( e ) What proportion of those who responded to the questionnaire actu-

ally received a typewritten (large page) questionnaire?
( f ) By looking at the response rates for each of the four formats, what

do you conclude from the study?

8. French gamblers in the seventeenth century used to bet that at least one
“one” would turn up on four rolls of a die. A “one” is often called an ace.
In a similar game they also bet on whether at least one double ace would
occur on 24 rolls of a pair of dice. A French nobleman, the Chevalier de
Méré, reasoned that both events were equally likely arguing essentially as
follows:
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Game 1: There is 1 chance in 6 of getting an ace on one roll so in four rolls,
the chances are four times that i.e. 4/6 = 2/3.

Game 2: There is a chance of 1/36 of getting a pair of aces from rolling a
single pair so for 24 pairs, the chances are 24 times that or 2/3
again.

However, from experience, de Méré doubted his arguments. It seemed
to him that in practice the first event occurred more frequently. This
situation came to be called the Paradox of Chevalier de Méré.
De Méré passed his problem on to Blaise Pascal (1623–1662). It was solved
in a correspondence between two of the greatest mathematical minds of
the day, Pascal himself and Pierre de Fermat (1601–1665). With your
understanding of probability theory the problem should not be very diffi-
cult. However Pascal and Fermat were starting from scratch with very few
of the probabilistic ideas that make thinking about such problems fairly
easy for us. In fact their correspondence was the starting point for the
development of a mathematical theory of probability.
(a) What is wrong with Chevalier de Méré’s arguments? (Hint: for Game

1 apply the argument when you use only 2 rolls.)
(b) What is the true probability in either case?
[Note: Although the probabilities are different, they are very similar. Later we shall do
some calculations to get some idea of the immense number of games one would have to
watch to detect fairly reliably that these probabilities are in fact different.]

9. The University of Auckland has Faculties as follows (with the percentage
of the student body in each following in parenthesis): Arts (30%), Com-
merce (19%), Science (18%), Engineering (7%), Law(7%), Education (6%),
Medicine(4%) and Other (9%), where “Other” encompasses the remaining
Faculties which are smaller than those listed. The percentages of female
students within these Faculties are: Arts (65%), Commerce (41%), Science
(39%), Engineering (15%), Law(52%), Education (82%), Medicine(49%)
and Other (47%).
(a) Construct a two-way table showing the percentages of males and

females in the various faculties.
(b) What percentage of Auckland’s students are female?
( c ) What percentage of Auckland’s female students are in (i) Arts?

(ii) Law? (iii) Engineering? (iv) Education?

10. Arab citizens make up 14% of the population of Israel. Also 11% of Israel’s
Jews and 52% of its Arab citizens live below the poverty line (TIME, 13
April 1992). Assume that Jews and Arabs account for the whole popula-
tion of Israel.
(a) What proportion of Israel’s population lives below the poverty line?
(b) What proportion of Israel’s poor (i.e. those below the poverty line)

are Arab?
( c ) Set up an appropriate two-way table and use it to answer (a) and

(b) again.
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11. In 1980, a US Senate Committee was investigating the feasibility of a na-
tional screening program to detect child abuse. A team of consultants
came up with the following estimates: 1 child in 100 is abused; a physi-
cian can detect an abused child about 90% of the time; and a national
screening program using physicians would incorrectly label about 3% of
the nonabused children as abused.
(a) Using the above information, what is the probability that a child is

actually abused given the screening program diagnoses the child as
such?

(b) Do you think it is appropriate to apply the above information to both
boys and girls?

( c ) Would the above information be relevant today?

12. There is a 40% to 60% chance that a pregnant woman with the HIV virus
will pass it on to her child. Approximately 1% of all black teenage girls
who bore children in New York City during 1988 were infected with HIV
(TIME, 2 July 1990). Taking the lower figure (40%), what proportion of
the babies born to black teenage girls in 1988 were infected? Express your
answer as a rate of infected babies per thousand births.

13. Most of the figures to follow come from a TIME cover story (6 July 1992)
about effective new drugs for treating schizophrenia. All are US figures
and all are approximate estimates.
(a) One in four schizophrenics attempts suicide. Of those who attempt

it, one in 10 succeeds. What proportion of schizophrenics actually
commit suicide?

Approximately 1% of of the population is schizophrenic, 0.8% of people
are homeless, and one third of the homeless are schizophrenic.
(b) What proportion of schizophrenics are homeless? (Difficult. You

cannot do this on a single tree.)
A child has a 10% chance of becoming schizophrenic if one parent is
schizophrenic and a 40% chance if both are. The chance of a child of a
schizophrenic developing the condition is reduced, but only slightly, when
raised by adoptive parents without the condition.
( c ) Does this information suggest anything to you about hereditary and

environmental effects for schizophrenia?
(d) It would be interesting to know what percentage of schizophrenics

had schizophrenic parents. What additional information would we
need to resolve this?

( e ) Assuming that people marry independently of their susceptibility to
schizophrenia and each couple has one child, answer the question
raised in (d).

( f ) Actually our “1% of Americans are schizophrenic” is not quite cor-
rect. The article really says that 1% of Americans develop schizophre-
nia. What can you therefore say about the percentage who have
schizophrenia?
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14. The final grade of students in a first year course in Statistics at Auckland
was made up of 30% from assignments and tests while the course is in
progress (to form a “coursework mark”) and 70% from an examination at
the end of the course. Table 2 showing the relationship between course-
work mark and final grade is taken from the results of 1270 students who
completed the course in 1992. The entries in the interior of the table are
the percentages of those students within the given range of coursework
marks who got each of the final grades.

(a) Can you think of a reason for presenting the data in this way (or a
use for it as presented)?

Table 2 : Coursework Marks and Final Grades

Final Grade

Percentage Coursework Fail
of Class Mark Grade C B A Total

2.7 ≤ 5 91.2% 8.8% 0 0 100%

4.6 5+ − 10 79.7 20.3 0 0 100

18.1 10+ − 15 53.9 35.7 10.0 0.4 100

33.9 15+ − 20 13.3 45.1 34.9 6.7 100

30.6 20+ − 25 0.3 12.6 60.3 26.8 100

10.1 25+ − 30 0 0 14.7 85.3 100

100

Suppose that we randomly select a student who completed the course.

(b) Describe, in words, a sample space for this experiment.
( c ) What is the probability that the student got between 25 and 30 for

coursework?
(d) What is the probability that the student got between 25 and 30 for

coursework and an A-grade?
Suppose that the figures in Table 2 lead to reasonable probabilities for a
randomly selected student currently taking the course.

( e ) What is the probability the student will get an A-grade given that
he or she got between 25 and 30 for coursework?

( f ) What is the probability that a student with between 10 and 15 for
coursework will get a B-grade or better?

The remainder of this exercise talks about proportions of the 1992 class.

(g) What proportion of the class got between 15 and 20 on coursework?
(h) What proportion of the class got between 15 and 20 on coursework

and failed?
( i ) What proportion of the class with between 15 and 20 on coursework

failed?
( j ) What proportion of the entire class failed? What proportion passed?
(k) What proportion of the class got A-grades?
( l ) What proportion of those with A-grades got over 25 on coursework?
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15. In North America, as in Australasia, cancer is the second leading cause
of death after heart diseases. Accidents account for only about a fifth as
many deaths as cancer. Table 3 gives the incidence rates (as new cases per
hundred thousand of population) and the mortality rates (as deaths per
hundred thousand) for 7 leading cancer sites.

Table 3 : Cancer Incidence and Mortality Ratesa

New Cases Deaths

Cancer Sites Male Female Total Male Female Total

Oral 20.6 9.7 30.3 5.2 2.8 8.0
Colo-Rectum 79.0 77.0 156.0 28.9 29.4 58.3
Lung 102.0 66.0 168.0 93.0 53.0 146.0

Skinb 17.0 15.0 32.0 4.1 2.6 6.7
Breast 1.0 180.0 181.0 0.3 46.0 46.3
Uterus 0 45.5 45.5 0 10.0 10.0
Prostate 99.0 0 99.0 28.0 0 28.0
Other 246.4 171.8 418.2 115.5 101.2 216.7

Total 565.0c 565.0c 1130.0 275.0 245.0 520.0
aSource: Constructed from data in The World Almanac and Book of Facts [1993, page 223]

except for prostate figures which are 1988 figures from American Cancer Soc.
bExcludes non-melanoma skin cancer.
cThese are the same simply because of the rounding of the data.

(a) What cancer has most new cases in a year?
(b) What cancer kills: (i) the most people? (ii) the most males?

(iii) the most females?
( c ) What proportion of breast cancer deaths are males?
(d) What proportion of male cancer deaths are due to: (i) lung cancer?

(ii) colon/rectum cancer?
( e ) What listed cancers affect: (i) males and not females? (ii) females

and not males?
The numbers of cancers contracted in a year and the numbers of deaths
in a year from that cancer give us a rough estimate of the chances that a
particular cancer will eventually kill someone who contracts it.
( f ) Which listed cancer is most likely to end up being fatal: (i) regardless

of gender? (ii) for men? (iii) for women? In each case, give the
probability of eventual death.

(g) What assumptions underly the type of calculations done in (f)?
When are these assumptions sensible?

(h) Doctors are more likely to talk about things like the 5-year survival-
rate than about the chances of eventual death from a disease. What
are some problems with “the chance that you will die from it” as a
measure of the seriousness of a disease?

16. The 15,679 known HIV cases in Australia up until December 1991, were
classified according to the origin of the infection as given in Table 4.
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Table 4 : HIV Cases in Australia to December 1991a

Category Number

Male homosexual/bisexual contact only 7, 597

Male homosexual/bisexual contact and intraveneous drug use 248
Intraveneous drug use only 499
Heterosexual contact 407

Haemophilia/coagulation disorder 209

Received from blood products or tissue (other than haemophiliac etc) 139

Other/undetermined 6, 488
Children 92

Total 15, 679
aSource: Australian HIV Surveillance Report as reported by TIME, 20 April 1992.

(a) The categories in the list were intended to form a partition of HIV
sufferers. How do we know this?

There were ambiguities in the original wording of the list: the word “only”
was added by us to try and reduce the potential confusion. We shall define
new events (or categories):

Hom = “male homosexual/bisexual contact”,
IVUse = “intravenous drug use”,
Hetero = “heterosexual contact”,
Haem= “haemophilia/coagulation disorder”, and
Blood = “received infected blood products”.

(b) By inspecting the table, which of these events are mutually exclusive
and which overlap?

( c ) There is no apparent overlap between Hetero and Hom, or Hetero
and IVUse. What does this mean?

(d) Represent each of the first 6 categories listed in the table above in
terms of the new events.

( e ) Represent the information in the table using a Venn diagram based
upon the newly defined classes and include on your diagram the
numbers of HIV cases given in the table.

( f ) What proportion of all HIV sufferers is known to fall into each of
the newly defined categories Hom to Blood , i.e. what is pr(Hom),
pr(IVUse), etc?

(g) Is heterosexual contact a more common source of HIV infection than
receipt of blood products?

(h) What proportion of HIV sufferers is known to have contracted the
virus by homosexual/bisexual contact or intravenous drug use?

( i ) Among all properly classified HIV sufferers (i.e. those not in the catch
all “Other/undetermined” category) what proportions are in each of
the categories Hom to Blood?

( j ) What proportion of those infected by receiving blood products, had
haemophilia or a coagulation disorder?
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17. Reporting on an address by Professor William Doe, President of the Gas-
troenterological Society of Australia, The Weekend Australian (30 June
1990) stated that tests used widely throughout Australia to detect bowel
cancer could lead to death because of widely inaccurate results. The tests,
which used chemicals to detect the presence of blood in faeces, were avail-
able over the counter at pharmacies and widely used for mass screening
programs. According to Professor Doe, they delivered a negative result on
30% to 50% of cancers (we shall assume 40%) and “these people are trag-
ically assured that they don’t have cancer”. A positive result is delivered
to 40% of people who do not have bowel cancer or its early warning signs,
some of these resulting from animal blood in the bowel from digested meat.
There are about 8, 000 new cases of bowel cancer per year in Australia out
of a population of approximately 16 million. We shall therefore estimate
the proportion of undiagnosed cases of bowel cancer and its precursors in
Australia at the time as approximately 0.0005. If a mass screening of all
Australians was undertaken using this test:
(a) What proportion of bowel cancer cases would be overlooked?
(b) What proportion of Australians would give a positive test?

( c ) What proportion of people testing positively would actually have the
disease?

(d) How could you reduce the false positive rate?
[Note: The good news is that more reliable tests are now available.]

18. Predicting whether a paroled prisoner will go on to commit violent offenses
is an extremely difficult task that no one seems to be able to do very well
(Vasil [1987]). In a 1968 study, carried out by the California Department
of Corrections, parolees were classified into two categories on the basis of
offender histories and psychiatric reports. One fifth were classified as being
“potentially aggressive” while the rest were classified as “less aggressive”.
In the potentially aggressive group, 3.1 per thousand were reconvicted for
violent offenses committed within one year after release from prison. For
the less aggressive group the rate was 2.8 per thousand.
(a) Of those reconvicted for violent offenses, what proportion had been

classified “potentially aggressive”?
(b) What is notable about the above figures?
( c ) The study does not strictly address the question of whether paroled

prisoners commit violent offenses? What is it really measuring and
what other factors are involved in that?

19. In 1993, a team of scientists from John Hopkins University and the Univer-
sity of Helsinki reported in Science (1993, vol. 260 p.751) their discovery of
a genetic marker for so-called “familial cancer of the colon”. This accounts
for about one in seven cases of cancer of the colon (hereafter CaCo) which
is the second leading cause of cancer deaths in the world. The scientists
estimated that one person in 200 carries the defective gene, that 95% of
people with the gene will develop cancer and, of those who get cancer, 60%
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will get cancer of the colon.
(a) From these figures, what percentage of people will develop CaCo

from this mechanism?
Professor Vogelstein of Johns Hopkins predicted a diagnostic test based
upon the genetic discovery. (The existing screening test used world wide
misses more than 70% of tumors.) Between five and 10 million Americans
are presently considered to be at increased risk of CaCo because of a strong
family history of the disease. Vogelstein believes that 75% of these people
will find that they do not have the implicated genetic marker and that
these people bear only the average risk of CaCo which is one chance in 20.
(b) What proportion of those with a “strong family history” will get

CaCo? What proportion of those who will get CaCo carry the de-
fective gene?

Detection of those carrying the marker is useful because their colons can
then be scanned annually using a fiber-optic scope, a procedure known
as colonoscopy which costs about $1, 000. (The five year survival rate for
CaCo is 90% when detected early.)
( c ) Taking the lower figure of 5 million Americans at increased risk, how

much money could be spent annually on colonoscopies if Vogelstein’s
predictions are borne out?

20. Two tennis players play a 3 set match (i.e. they keep playing until one
player wins two sets). Suppose that the two players are evenly matched so
that each player has a 50% chance of winning a set and that the outcomes
of different sets are independent.
(a) Write down a sample space for the experiment.
Let A denote the event “Player 1 wins the match” and B denote the event
“Match finishes in 2 sets”.
(b) Find (i) pr(A), (ii) pr(B), (iii) pr(A ∩ B), (iv) pr(A ∪ B), (v)

pr(B | A).
( c ) Are A and B independent? (Explain your answer.)
(d) Are A and B mutually exclusive?

21. Each day the price of a certain stock either moves up one cent or moves
down one cent. It moves up with probability 1/3 and down with probability
2/3 independently of previous movements. We are interested in what the
price will be in 3 days time. Let A be the event that the price has increased
at the end of 3 days and let B be the event that the price drops on the
first day. Write down a suitable sample space for this “experiment” and
calculate:
(a) pr(A); (b) pr(B); (c) pr(A ∩ B); (d) pr(A | B). (e) Are A and B
(i) independent? (ii) mutually exclusive? Explain your answer.

22. Sanderson Smith [Smith, 1990] told the following story. He received an
unsolicited phone call from a marketing research firm asking him to keep
records and receipts for his purchases of certain items over a period of
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three months. Some incentives were offered. The firm was to send him
some journal booklets to record his purchases in; one journal for each of
the three months. If he returned the journal for a given month along
with receipts to verify his stated purchases he would go into that month’s
draw. Each draw would give him 1 chance in 10 of winning a prize of $25.
Furthermore, if he returned all 3 journals and receipts on time, he would
have 1 chance in 100 of winning a three day trip to Las Vegas, and 1 chance
in 350 of winning a two-week holiday for two in Hawaii. Sanderson Smith
did some calculations to figure out whether it was worth participating.
Regarding the trips as the major prizes and the $25 prizes as minor, and
assuming he fulfilled all the conditions, what is the probability of winning:
(a) (i) None of the minor prizes? (ii) All 3 minor prizes (iii) Exactly

one minor prize? (iv) Exactly 2 minor prizes?

(b) (i) Neither major prize? (ii) Las Vegas but not Hawaii? (iii) Both
major prizes?

( c ) (i) No prizes at all? (ii) One or more minor prizes, but no major
prize?

(d) If recording the data in the journals took 10 hours, would you be
prepared to do it? [Sanderson Smith “declined to participate”.]

23. Writing in Rolling Stone in February 1991, humorist P.J. O’Rourke rumi-
nated on his experiences covering the Gulf War from Saudi Arabia. He
pondered his chances of receiving a direct hit by a Scud missile. He figured
that a Scud, which carried about 113 kg of explosive would have a blast
area of 91 meters in diameter at most, and that missiles were being lobbed
into an area of eastern Saudi Arabia that was roughly 80 km long and
48 km wide. Given that Scuds were inaccurately aimed, you can assume
that missiles fall randomly on this area.
(a) What was his probability of being in the blast area of a missile?

(b) If 20 missiles fell onto the area, what is the probability of escaping
all 20?

24. Suppose that an insurance company has classified its drivers into 3 classes
using various criteria. Of drivers insured with them, 20% fall in the “low
risk” category, 70% into “medium risk” category and 10% are “high risk”.
From the historical records, 1% of low risk drivers make a claim in any
one year. Corresponding figures for medium risk and high risk drivers are
4% and 10% respectively. Assume that there have been no changes in the
company’s business that would prevent the historical record from being a
good guide to the immediate future.

(a) Construct a two-way table of probabilities.
(b) What is the probability that a randomly selected driver in the medium

risk category will have a claim?
( c ) If we select a driver at random, what is the probability that the driver

has a claim and is in the medium risk category?
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(d) What proportion of drivers can be expected to have a claim (regard-
less of risk category)?

( e ) What proportion of claims can we expect to be made by drivers
classified as high risk?

*( f ) If a driver goes 3 years without a claim, what is the probability he
or she had been classified into the low risk group? (Treat different
years as independent.)

25. In Chapter 1 of Brook et al. [1986], Barry Singer gives an entertaining
and informative discussion of many of the ideas in this chapter and about
finding a mate as well. This exercise revolves around your chances of
finding an ideal mate.

(a) Make a list of the characteristics you consider absolutely essential in
a partner (e.g. sufficiently intelligent, similar sense of humor, . . . ).

(b) Estimate or guess, for each item on the list, the proportion of people
you meet that satisfy the listed criterion (e.g. 30% are intelligent
enough). Think of each of these numbers as being the probability
that a new person you meet will satisfy the listed criterion.

( c ) Assume independence of the listed criteria. How do you get from the
individual probabilities in (b) to the probability that a new person
you meet will satisfy every criterion on your list? Make the calcula-
tion.

(d) Which criteria on your list, if any, are obviously not independent?
Which of these are positively associated? Which are negatively as-
sociated?

( e ) Assume you meet 300 new people a year. From the calculation in
(c), how many years would you expect it will take to you, on average,
to find a person meeting all your essential criteria?

( f ) Are you depressed? Are some of your criteria not so essential after
all? Which items on the list are making the search so difficult? How
do the associations affect the answer? If you are still interested in
this problem, read Barry Singer’s chapter!

26. Consider the life table given in Table 5. It gives the numbers of males
and females surviving at different ages per 100, 000 born and can thus be
interpreted as a way of presenting the probability that a randomly chosen
baby will still be alive at each age.
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Table 5 : Numbers Surviving per 100,000 Borna

Age (years) Males Females

0 100, 000 100, 000
1 98, 826 99, 035
5 98, 565 98, 827
10 98, 414 98, 692
15 98, 216 98, 569
20 97, 473 98, 304
25 96, 594 97, 998
30 95, 851 97, 684
35 95, 180 97, 317
40 94, 407 96, 792
60 82, 690 89, 099
aSource: NZ Life Tables, 1985-1987.

(a) Find the probability that: (i) a boy who survives the first year of
life will reach 20; (ii) a 20 year old woman will reach 60.

(b) By evaluating the probabilities of dying within a 5 year period given
being alive at the start of the period, what is the second most dan-
gerous 5-year period up to age 40 (i) for a male? (ii) for a female?
You may find the answer to (i) surprising. Can you think of an
explanation?

( c ) For a 20 year old man and a 20 year old woman, what is the prob-
ability that: (i) both will reach 60? (ii) the woman will reach 60
but the man will die before 60? (iii) neither will reach 60.

(d) What assumption did you have to make about the lifetimes of the
two people in part (c) in order to do the calculations? Would this
assumption hold if the man and woman were a married couple? If you
think the assumption would fail, would you expect the association
between lifetimes to be positive or negative? Why?

( e ) Assume that 20 year old men and women exist in equal numbers.
What is the probability that a random 20 year old person will live
until 40?

Let t0 = 0, t1, t2, . . . , tn, . . . be the ages in the life table at which survival
probabilities are given. Population life tables are not, in fact, constructed
by following a group of people and counting how many are still alive at
age t1, at age t2 and so on. Let Ai represent the event “alive at age ti”.
( f ) By using the generalized multiplication rule and considering the na-

ture of the intersections, show that

pr(An) = pr(A1)pr(A2|A1)pr(A3|A2) . . .pr(An|An−1) .

The life table is constructed using this relationship and data collected at
the current time.

(g) How would you estimate estimate an event like pr(Ai |Ai−1), for
example pr(still alive at age 25 | alive at age 20), on the basis of 1995
statistics?
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(h) What assumption is being made by applying the answers in (a)(ii),
(c) and (e) to people who are currently 20 years old? How valid do
you think the assumption is?

27. The distribution of blood types for the New Zealand European population
is as follows:

40% type A, 9% type B, 49% type O, 2% type AB.

Suppose that the blood types of European married couples are independent
and that both the husband and the wife follow this distribution of blood
type. In the following questions, we assume that the couple is randomly
selected.
(a) If the wife has type B blood, what is the probability that the husband

has type B blood?
(b) What is the probability that both the husband and wife have type B

blood?
( c ) What is the probability that at least one member of the couple has

type B blood?
(d) What is the probability that both the husband and wife have the

same type blood?
( e ) An individual with type B blood can safely receive transfusions only

from persons with type B or type O blood. What is the probability
that the husband of a woman with type B blood is an acceptable
blood donor for her?

( f ) Construct a two-way table of probabilities for the various husband
and wife blood-type combinations. Use the table to find your answers
for (a) to (e).

28. In her 9 September 1990 “Ask Marilyn” column in Parade Magazine, Mar-
ilyn vos Savant (reported to be the holder of the world’s highest I.Q.) posed
a problem that attracted thousands of replies and lots of the controversy.
The problem is as follows. “Suppose you’re on a game show and given a
choice of three doors. Behind one is a car; behind the others are goats.
You pick door No. 1, and the host, who knows what is behind them, opens
No. 3 which has a goat. He then asks if you want to pick No. 2. Should
you switch?” Although it is not in the original statement of the problem
it is clear from Marilyn’s replies in subsequent columns that the Host will
always open a door which does not belong to the player and has a goat
behind it.41 What is the probability of winning the car in a situation like
this if your strategy is always to switch? never to switch?

29. The following, an historic problem called Bertrand’s Box Problem, is taken
from R.G. Seyman’s discussion of Morgan et al. [1991]. A box contains
three drawers, one containing two gold coins, one containing two silver

41It is possible, though more complicated, to solve the problem without knowing this – see
Morgan et al. [1991].
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coins, and one containing one gold and one silver coin. A drawer is chosen
at random and a coin that is randomly selected from that drawer. If the
selected coin turns out to be gold, what is the probability that the chosen
drawer is the one with the two gold coins?42

30. Digital data is transmitted as a sequence of signals which represent 0’s
and 1’s. Suppose that such data is being transmitted to a satellite and
then relayed to distant site. Suppose that, due to electrical interference in
the atmosphere, there is a 1 in 1,000 chance that a transmitted 0 will be
reversed between the sender and satellite (i.e. distorted to the extent that
the satellite’s receiver interprets it as a 1) and a 2 in 1,000 chance that
a transmitted 1 will be reversed. Suppose that 40% of transmitted digits
are 0’s.

(a) What is the probability that a transmitted digit is correctly received
by the satellite?

(b) Assuming independence, what is the probability that all digits are
received correctly (i) if 1,000 digits are transmitted? (ii) if 10,000
are transmitted?

( c ) Suppose that between the satellite and the receiver, the chances of
reversal are twice as large as they were between the sender and satel-
lite. Assuming independence, what is the probability that a digit
reaches the receiver as originally sent?

31. In reliability theory, components in a system are said to be in parallel if
the system fails only if all the components in the system fail. For example,
if we have an alarm warning system which gives warnings via a flashing
light, a siren and a digital display, the warning system fails only if all three
devices fail to alert people to the problem.

(a) Suppose that the light fails with probability 0.01, the siren with
probability 0.02 and the display with probability 0.08. Assuming
failures occur independently, what is the probability that the system
fails?

(b) Particularly where components fail independently, putting parallel
components into a system can make the system dramatically more
reliable than any of its components, as in (a). However, the results
are not as good as the independence calculations show if there are
common causes of failure (resulting in positive association). Can you
think of a possible common cause of failure for all three components
above?

42Another version of this problem presents it as a card con trick. There are 3 cards with

their two sides colored respectively as red/red, red/black and black/black. A card is chosen
at random. The player can see the top side is red and has to guess the bottom side. Most

people intuitively think that the bottom side is equally likely to be red or black. There is a

potential for cheating gamblers out of money because the actual probability that the bottom

side is red is quite different from 50%.
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( c ) Can you think of anything from your own experience where a sub-
system of components act in parallel? (It need not be a mechanical
or electronic system, it could be an administrative system.)

At the other extreme from a parallel subsystem, a set of components is
said to be in series when the system fails if any one of the components
fail. As a (simplified) example, suppose you plan to travel to Los Angeles
for a meeting by driving to the airport, catching a flight to Los Angeles
and picking up a hire car and driving to the site of the meeting. There
are 4 “components” discussed here, the initial drive, the flight, picking up
the hire car, and another drive (we could obviously break each of these
down further) which are “in series”. Suppose that you have estimated
the probabilities of something going wrong with each of these components
which would stop your getting to the meeting on time to be 0.02, 0.05,
0.08, and 0.03 respectively.
(d) Assuming independent causes of failure, what is the probability of

failing to make the meeting on ? [Hint: It is easier to work with
succeeding than failing for series systems.]

Note from your answer how, in contrast to a parallel system, the series
system is much less reliable than any of its components.
( e ) Can you think of any common causes of failure here?
( f ) What are some subsystems of series components that you use or have

experienced?
Suppose that we complicate the system a little by allowing “taking a taxi-
cab” as an alternative to hiring and driving a car for getting from the
airport to the final destination and that this alternative has probability
0.04 of failure.
(g) In terms of the failure of each “component” and its complement (suc-

cess), define the possible outcomes in the event “making it to the
meeting”

(h) Again assuming that all failures are independent, what is the prob-
ability of failing to make the meeting now?

*32. A large study of college students by Professor Stanley Coren of the Univer-
sity of British Columbia and Dr Diane Halpern of San Bernardino State
University showed that left-handed people had an 89% greater risk of hav-
ing a car accident than right-handed people (NZ Herald , 5 January 1991).
Left-handed people make up 10% of drivers. What percentage of people
having car accidents are left-handed?
[Hint: Work with p where p denotes the probability that a right handed person has a car accident.

You do not actually need to know p to solve the problem, but if you are having trouble working with

an unknown p, assume a value for it and see if you can see why your answer does not depend upon

the value assumed.]


