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Sample size for a single proportion

“How big should my sample size be?” Statisticians are often asked this
question. When studies involve data in the form of counts or proportions, the
best answer is probably, “As big as you can afford.” The reason for this is
that there is surprisingly little information in such data, even from quite big
studies.

For example, in a 1991 poll of 1, 000 adult Americans, 45% said that they
would be prepared to ask a child under 18 to give up a kidney for a trans-
plant into a relative. The corresponding 95% confidence interval for the true
percentage in the population who would do this is given by [42%, 48%], an
interval of width 6%. This is fairly imprecise, and yet it is based upon a
sample of 1, 000 which is an unbelievably large sample size for researchers in
most areas outside of survey sampling. And even with this study of 1, 000
people, if you wanted to look at subgroups, e.g. by age and sex, the sample
sizes of the individual groups of interest soon become small, and the resulting
confidence intervals are much wider than the 6% above.

1994 World Heath Organization figures rated Hepatitis B as the fourth
biggest killer among the world’s infectious diseases.1 Suppose that we wanted
to take a sample of the citizens of a particular city to determine the percentage
of people who have, or are carrying, Hepatitis B. Suppose that the level of
precision we require is such that a 95% confidence interval is no wider than
5% (i.e. 0.05).

Assuming n is large enough, a confidence interval for the true proportion p
is given by p̂± z se(p̂ ), where se(p̂ ) =

√
p̂ (1− p̂ )/n. The interval has

Width = 2× z
√
p̂ (1− p̂ )/n.

which is twice the margin of error . The above expression involves p̂ which is
unknown until the study is finished. We will postpone considering what to do
about p̂ for the time being. Now, suppose that we want the margin of error
to be no more than m. We therefore want

z
√
p̂ (1− p̂ )/n ≤ m.

or, on squaring both sides,

z2 × p̂ (1− p̂ )
n

≤ m2 .

11-2 million deaths per year. Follows Acute Respiratory infections (4.3 million), Diarrheal
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Solving this equation for n gives

n ≥
( z
m

)2

× p̂ (1− p̂ )

The boxed equation still depends upon the eventual p̂, which is unknown when
one is planning the survey. However, we see that the bigger p̂ (1 − p̂ ) is, the
larger n has to be. Now, Fig. 1 graphs p̂ (1 − p̂ ) versus p̂, and we see that
p̂ (1 − p̂ ) takes its biggest value when p̂ = 1

2 . Thus, the “worst case” occurs
when we use p̂ = 1

2 in the boxed equation as it leads to the biggest value of
n. Use of this value of n guarantees that the interval will be no wider than w
no matter what p̂ turns out to be.
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Figure 1 : p̂ (1− p̂ ) versus p̂.

In the motivating example, we want to use a 95% confidence interval and
so use z = 1.96. We require an interval no wider than w = 0.05 (since
5% = 5/100 = 0.05), or m = 0.025. Thus, we will have sufficient precision if
we take

n ≥
(

1.96
0.025

)2

× 1
2
× 1

2
= 1536.64.

In the interests of using nice round numbers, we would probably end up taking
a sample of around 1500, or 2000 depending upon the budget.

From Fig. 1, we see that p̂ (1− p̂ ) can be quite a bit smaller than 1
2 × 1

2 if
p̂ is close to “zero” or “one”. Suppose that we knew that the prevalence of
Hepatitis B in our city was no more than 10%. The sample proportion should
end up roughly in the same sort of range. If we substitute p̂ = 0.1 into the
equation instead of p̂ = 1

2 we get n ≥ 553.19. Thus, if we knew p ≤ 0.1, we
would know we could be confident of getting the required level of precision
from a much smaller (and therefore cheaper) sample.

Rule for dealing with p̂ in the sample size formula: Use p̂ = 1
2 ,

unless it is known that p belongs to an interval a ≤ p ≤ b that does not
include 1

2 , in which case substitute the interval endpoint nearer to 1
2 for p̂.
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To illustrate, if nothing is known about the true value of p, or it is known
that 0.2 ≤ p ≤ 0.6, or 0.4 ≤ p ≤ 0.9 substitute p̂ = 1

2 . If it is known that
0.02 ≤ p ≤ 0.10 substitute p̂ = 0.1, and if 0.7 ≤ p ≤ 0.9, substitute p̂ = 0.7.

Example Suppose we require a 95% confidence interval for p to be no wider
than 0.02 (i.e. 2%). Using the formula above with z = 1.96, if nothing is known
about the size of p, we should take

n ≥
(

1.96
0.01

)2

× 1
2
× 1

2
= 9604.

If we knew that 0.01 ≤ p ≤ 0.05, we would substitute p̂ = 0.05 to obtain

n ≥
(

1.96
0.01

)2

× 0.05× 0.95 = 1824.76.

These calculations show that we need huge samples to estimate proportions
very precisely – nearly 10, 000 observations in the first calculation. These
calculations apply only to getting the required precision for estimates of single
proportions. Even larger numbers are required to get this sort of precision
for differences. However, survey organizations seldom sample more than one
or two thousand people. Part of the reason for this is cost. Another reason
is that, in practice, it is very hard to control the level of non-sampling errors
in very large surveys (see Section 1.1.2). There is little point in reducing the
sampling errors below the level of the non-sampling errors (or biases).

Exercises
Estimate the size of sample required to ensure that:
1. A 90% confidence interval for an unknown p is no wider than 0.04.
2. A 99% confidence interval for p expressed as a percentage is no wider than

4% if it is believed that p < 0.2.
3. A 95% confidence interval for an unknown p is no wider than 0.01.
4. A 90% confidence interval for p expressed a a percentage is no wider than

5% if it is believed that p > 0.9.


