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The Wilcoxon Rank-Sum Test
The Wilcoxon rank-sum test is a nonparametric alternative to the two-

sample t-test which is based solely on the order in which the observations
from the two samples fall. We will use the following as a running example.

Example 1 In a genetic inheritance study discussed by Margolin [1988],
samples of individuals from several ethnic groups were taken. Blood samples
were collected from each individual and several variables measured. For a
detailed discussion of the study and a definition of the variable, see Exer-
cises 10.1.3 in the text. We shall compare the groups labeled “Native Amer-
ican” and “Caucasian” with respect to the variable MSCE (mean sister chro-
matid exchange). The data is as follows:

Native American: 8.50 9.48 8.65 8.16 8.83 7.76 8.63
Caucasian: 8.27 8.20 8.25 8.14 9.00 8.10 7.20 8.32 7.70

7.5 8.0 8.5 9.0 9.5

Native American
Caucasian

Figure 1 : Comparing MSCE measurements.

Looking at the dot plots for the two groups, several questions come to mind.
Firstly, do the data come from Normal distributions? Unfortunately we can’t
say much about the distributions as the samples are too small. However
there does not seem to be any clear lack of symmetry. Secondly, are the two
distributions similar in shape? Again it is hard to say much with such small
samples, though the Caucasian data seems to have longer tails. Finally, is
there any difference in the centers of location? The plots suggest a difference
with Native American values being larger on average. We shall now put this
type of problem in a more general context and come back to this example
later.

Suppose, more generally, that we have samples of observations from each
of two populations A and B containing nA and nB observations respectively.
We wish to test the hypothesis that the distribution of X-measurements in
population A is the same as that in B, which we will write symbolically as H0
: A = B. The departures from H0 that the Wilcoxon test tries to detect are
location shifts. If we expect to detect that the distribution of A is shifted to
the right of distribution B as in Fig. 2(b), we will write this as H1 : A > B.
The other two possibilities are H1 : A < B (A is shifted to the left of B), and
the two sided-alternative, which we will write as H1 : A 6= B, for situations
in which we have no strong prior reason for expecting a shift in a particular
direction.
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(a)   H  : A = B (b)   H  : A > B

shift

distribution A = distribution B distribution Adistribution B

0 1

Figure 2 : Illustration of H0 : A = B versus H1 : A > B.

The Wilcoxon test is based upon ranking the nA + nB observations of the
combined sample. Each observation has a rank: the smallest has rank 1, the
2nd smallest rank 2, and so on. The Wilcoxon rank-sum test statistic is the
sum of the ranks for observations from one of the samples. Let us use sample
A here and use wA to denote the observed rank sum and WA to represent the
corresponding random variable.

wA = sum of the ranks for observations from A.

Example 1 cont. We have sorted the combined data set into ascending or-
der and used vertical displacement as well as ethnic group labels to make very
clear which sample an observation comes from (“NA” for the Native American
group and “Ca” for the Caucasian group). The rank of an observation in the
combined sample appears immediately below the label.

7.76 8.16 8.50 8.63 8.65 8.83 9.487.20 7.70 8.10 8.14 8.20 8.25 8.27 8.32 9.00

Race Ca Ca NA Ca Ca NA Ca Ca Ca Ca NA NA NA NA Ca NA
Rank: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The sum of the ranks for the Native American group is

wNA = 3 + 6 + 11 + 12 + 13 + 14 + 16 = 75.

How do we obtain the P -value corresponding to the rank-sum test statistic
wA? To answer this question we must first consider how rank sums behave
under H0, and how they behave under H1. Fig. 3 depicts two situations using
samples of size nA = nB = 5 and plotting sample A observations with a “•”
and sample B observations with an “o”.

Suppose that H0 : A = B is true. In this case, all n = nA + nB observations
are being drawn from the same distribution and we might expect behavior
somewhat like Fig. 3(a) in which the pattern of black and white circles is
random. The set of ranks for n observations are the numbers 1, 2, . . . , n.
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When nA of our n observations from a distribution are labeled A and nB
observations from the same distribution are labeled B, then as far as the
behavior of the ranks (and thus wA) is concerned, it is just as if we randomly
labeled nA of the numbers 1, 2, . . . , n with A’s and the rest with B’s. The
distribution of a rank sum, WA, under such conditions has been worked out
and computer programs and sets of Tables are available for this distribution.

• o o • o • • o • o o o o o • o • • • •
Rank 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

(a) (b)

Figure 3 : Behaviour of ranks.

Suppose that H1 : A > B is true: In this case we would expect behavior more
like that in Fig. 3(b) which results in sample A containing more of the larger
ranks. Evidence against H0 which confirms H1 : A > B is thus provided by an
observed rank sum wA which is unusually large according to the distribution
of rank sums when H0 is true. Thus the P -value for the test is

(H1 : A > B) P -value = pr(WA ≥ wA),

where the probability is calculated using the distribution that WA would have
if H0 was true. Suppose, on the other hand, that the alternative H1 : A < B
is true. In this case we would expect the A observations to tend to be smaller
than the B observations, resulting in a small rank sum wA. The P -value for
the alternative H1 : A < B is therefore

(H1 : A < B) P -value = pr(WA ≤ wA).

Note that in testing one-sided alternatives, the direction of the inequality
used in the calculation of the P -value is the same as the direction defining the
alternative, e.g. A > B and WA ≥ wA.

For the two-sided test, i.e. testing H0 : A = B versus the alternative H1 :
A 6= B, a rank sum that is either too big or too small provides evidence
against H0. We then calculate the probability of falling into the tail of the
distribution closest to wA and double it. Thus if wA is in the lower tail
then P -value = 2 pr(WA ≤ wA), whereas if wA is in the upper tail then
P -value = 2 pr(WA ≥ wA).

Example 1 cont. Here, we want to test a null hypothesis H0 which says
that the MSCE distribution for Native Americans is the same as that for
Caucasians. Although the Native American MSCE values in the data tend to
be higher, there was no prior theory to lead us to expect this so we should be
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doing a two-sided test. The rank sum for for the Native American group was
w
NA

= 75. We know from the plot of the data that this will be in the upper
tail of the distribution. The P -value is thus

P -value = 2 pr(W
NA
≥ 75) = 0.114 (computer).

The evidence against H0 which suggests that median MSCE measurements are
higher for Native Americans than for Caucasians is, at best, weak. In fact
we can’t be sure that this evidence points to a difference in the shapes of the
two distributions rather than a difference in the centers of location. [We note
that, for this data set, a two-sample t-test (Welch) for no difference in means
gives almost exactly the same P -value .]

Treatment of ties
Consider the data to follow. It has two observations tied with value 4, three

more tied with value 6 and a set of four observations tied with value 11.

Data: 0 1 2 2 5 6 6 6 7 8 10 11 11 11 11 14 ....
From: A B A B A A B B B A B A A B B A ......
1 to n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ....
Ranks: 1 2 3.5 3.5 5 7 7 7 9 10 11 13.5 13.5 13.5 13.5 16 ....

We listed the data in ascending order together with the labels telling us which
sample each data point came from. Next we wrote down the numbers 1 to n
as we have done before to construct ranks. Both sample A and sample B have
an observation with value 2. In the initial allocation of ranks, the sample A
observation has arbitrarily been assigned a 3 and the sample B observation
a 4. Since we cannot distinguish order between these two observations, they
should be treated in the same way. What values should we use as the ranks
to construct a rank sum when we have ties?

We assign each observation in a tie its average rank.

The rule in the box tells us to assign both observations tied values1 at value
2 the average of the ranks from the first pass through the data, namely 3.5,
the average of 3 and 4. Similarly, each of the three observations with value
6 should be assigned rank 7 (the average of 7, 8, and 9), whereas the four
observations tied with value 11 should be given rank 13.5 (the average of
12, 13, 14 and 15).

1Strictly, the distribution of WA should also be modified when ties are present (see Bhat-

tacharyya and Johnson [1977, page 515]).
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Example 2 We will also use the Wilcoxon rank-sum test to compare the
Native American (NA) and Caucasian (Ca) groups with respect to another
variable called DISPERSION (see Table 10.3.3 in the text for the original data
set). The ordered data, ranks etc. are as follows:

NA: 0.45 0.50 0.61 0.63 0.75 0.85 0.93
Ca: 0.44 0.45 0.52 0.53 0.56 0.58 0.58 0.65 0.79

Race: Ca Ca NA NA Ca Ca Ca Ca Ca NA NA Ca NA Ca NA NA
Rank: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2.5 2.5 8.5 8.5

The sum of the ranks for the Native American group is

wNA = 2.5 + 4 + 10 + 11 + 13 + 15 + 16 = 71.5.

Our null hypothesis H0 says that the distribution of DISPERSION measure-
ments is the same for both ethnic groups. Since we have no prior theory, we
will perform a 2-sided test. There is a slight, but noticeable, tendency for
Native American values to be higher, so that this rank sum will be in the
upper tail of the distribution. The P -value is thus

P -value = 2 pr(W
NA
≥ 71.5) > 2 pr(W

NA
≥ 72) = 0.210 (computer).

Thus, the Wilcoxon test gives no evidence against the null hypothesis of iden-
tical distributions for DISPERSION. [We note that a two-sided two-sample t-
test of H0 : µ

NA
= µ

Ca
has P -value 0.19 (Welch) , 0.15 (pooled) showing no

evidence of a difference in the means.]

P-values from Tables

When one performs a Wilcoxon test by hand, Tables are required to find P -
values . Readers who are not interested in this level of detail should proceed
to the Notes at the end of the subsection. For small sample sizes, tables
for Wilcoxon rank-sum test are given. We supplement this with a Normal
approximation for use with larger samples. All probabilities discussed relate
to the distribution of WA when H0 is true.

Small sample Tables

Tables for the Wilcoxon rank-sum test are given in the Appendix at the end
of this module. A segment is printed as Table 1. When the two samples have
different sizes, the tables are set up for use with the rank sum for the smaller
of the two samples, so that we define sample A to be the smaller of the two
samples. One chooses the row of the table corresponding to the combination
of sample sizes, nA and nB , that one has.
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For given nA, nB and prob, the tabulated value for the lower prob-tail is
the largest value of wA for which2 pr(WA ≤ wA) ≤ prob. For example, when
nA = 7 and nB = 9, the tabulated value for prob = 0.2 is wA = 50. Thus,

pr(WA ≤ 50) ≤ 0.2, but pr(WA ≤ 51) > 0.2.

In other words, the values in the lower 0.2 (or 20%) tail are those ≤ 50.
The tabulated value for the upper prob-tail is the smallest value of wA for

which pr(WA ≥ wA) ≤ prob. When nA = 7 and nB = 9, the tabulated value
for the upper tail and prob = 0.2 is wA = 69. Thus,

pr(WA ≥ 69) ≤ 0.2 but pr(WA ≥ 68) > 0.2.

In other words, the values in the upper 0.2 (or 20%) tail are those ≥ 69.3

Table 1 : Segment of Wilcoxon Rank-Sum Table

Lower Tail Upper Tail

prob prob
nA nB .005 .01 .025 .05 .10 .20 .20 .10 .05 .025 .01 .005

7 7 32 34 36 39 41 45 60 64 66 69 71 73
8 34 35 38 41 44 48 64 68 71 74 77 78
9 35 37 40 43 46 50 69 73 76 79 82 84
10 37 39 42 45 49 53 73 77 81 84 87 89
11 38 40 44 47 51 56 77 82 86 89 93 95
12 40 42 46 49 54 59 81 86 91 94 98 100

These tables can be used to bracket tail probabilities in the same way as
the tables for Student’s t-distribution (described in Section 7.6.3 in the text).
For example, suppose that nA = 7 and nB = 9 and wA = 71. We see that 71,
being bigger than 69, is in the upper 20% tail but is not large enough to be
in the upper 10% tail. Thus pr(WA ≥ 71) is between 0.1 and 0.2. Similarly,
pr(WA ≥ 78) is between 0.025 and 0.05, and pr(WA ≥ 88) ≤ 0.005.

Using nA = nB = 7 (and the lower tail of the distribution) we see that
pr(WA ≤ 38) is between 0.025 and 0.05, and pr(WA ≤ 47) is bigger than 0.20.

When nA = 7, nB = 10, pr(WA ≤ 35) is smaller than 0.005, pr(WA ≤ 41)
is between 0.01 and 0.025, pr(WA ≤ 50) is greater than 0.2, and pr(WA ≥ 82)
is between 0.025 and 0.05.

2The more complicated description of the entries of the Wilcoxon tables stems from the

fact that the distribution of rank sums is discrete. For the Student(df) distribution, and

given prob, one can find a value of t so that pr(T ≥ t) = prob, exactly. This cannot be

done in general for discrete distributions.
3Similarly, the lower 10% tail consists of values ≤ 46, the upper 10% tail consists of values

≥ 73, and the upper 5% tail consists of values ≥ 76.
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Remember to double the probabilities for a two-sided test.

Normal approximation for larger samples

Our Wilcoxon Tables cater for sample sizes up to nA = nB = 12. When
both sample sizes are 10 or greater, we can treat the distribution of WA as if
it were Normal(µA, σA), where

µA =
nA(nA + nB + 1)

2
and σA =

√
nAnB(nA + nB + 1)

12
.

More precisely,

pr(WA ≥ wA) ≈ pr(Z ≥ z), where z =
wA − µA

σA

and Z ∼ Normal(0, 1). For example, suppose that nA = 10, nB = 12, and we
want pr(WA ≥ 145). Then, µA = 10× (10 + 12 + 1)/2 = 115 and

σA =

√
10× 12× (10 + 12 + 1)

12
= 15.16575

pr(WA ≥ 145) ≈ pr
(
Z ≥ 145− 115

15.16575

)
= pr(Z ≥ 1.978) = 0.024.

so that

Notes
1. The Wilcoxon test is still valid for data from any distribution, whether

Normal or not, and is much less sensitive to outliers than the two-sample
t-test.

2. If one is primarily interested in differences in location between the two
distributions, the Wilcoxon test has the disadvantage of also reacting to
other differences between the distributions such as differences in shape.

3. When the assumptions of the two-sample t-test hold, the Wilcoxon test
is somewhat less likely to detect a location shift than is the two-sample
t-test. However, the losses in this regard are usually quite small.4

4. Nonparametric confidence intervals for θ = µ̃A − µ̃B , the difference
between the two population medians (or any other measure of location),
can be obtained by inverting the Wilcoxon test, provided one is willing
to assume that the two distributions differ only by a location shift.5 In
Example 10.2.5, a 95% confidence interval for the true difference in median
MSCE between Native Americans and Caucasians is given by [−0.2, 1.1].

4See Bhattacharyya and Johnson [1977, page 538].
5See Bhattacharyya and Johnson [1977, page 525].
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A 95% confidence interval (Welch) for the difference in means is given by
[−0.1, 1.0].

5. In a practical situation in which we are uneasy about the applicability
of two-sample t methods, we use both them and the Wilcoxon and feel
happiest when both lead to very similar conclusions.

6. The Mann-Whitney test is essentially identical to the Wilcoxon test, even
though it uses a different test statistic.

7. Notched box plots. Many computer programs give the option of putting
notches in box plots as shown in Fig. 10.2.10. If the sloping parts of the
notches overlap there is no significant difference between the medians at
the 5% level. If they do not overlap there is a significant difference.6

Figure 4 :
Notched box plots.

8. Just as the Wilcoxon test is a nonparametric alternative to the two-sample
t-test, the Kruskal-Wallis test is a nonparametric alternative to the one-
way analysis of variance F -test.7

Quiz for Section 10.1
1. What test statistic is used by the Wilcoxon rank-sum test?
2. Verbally, how is that test statistic obtained?
3. What null hypothesis does it test? What are the possible alternative hypotheses?
4. What assumptions are made by the test?
5. Qualitatively, what should happen to the rank sum for sample A if distribution A is

shifted to the right of distribution B? if it is shifted to the left?
6. Which test is less sensitive to outliers, the Wilcoxon test or the two-sample t-test?

Which test is least sensitive to non-Normality? Why?

Exercises for Section 10.1
Consider the data described in Exercises 10.3 and given in Table 10.3.3 in

the text. Use the Wilcoxon test to determine whether there is any evidence
of a difference in the median DISPERSION between:

(a) the Asian group and the Native American group;
(b) the Native American group and the Black group. Make the compar-

ison (b) in two ways, (i) with the outlier in the Black group included
in the analysis and (ii) with it omitted from the analysis.

6We have also seen shading of part of the box being used instead of cutting notches to

accomplish the same purpose. Here significant differences between groups correspond to no
overlap of the shaded regions.
7See Bhattacharyya and Johnson [1977, page 533].
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Appendix : Wilcoxon Rank-Sum Table
Probabilities relate to the distribution of WA, the rank sum for group A when
H0 : A = B is true. The tabulated value for the lower tail is the largest
value of wA for which pr(WA ≤ wA) ≤ prob. The tabulated value for the
upper tail is the smallest value of wA for which pr(WA ≥ wA) ≤ prob.

Lower Tail Upper Tail

prob prob
nA nB .005 .01 .025 .05 .10 .20 .20 .10 .05 .025 .01 .005

4 4 10 11 13 14 22 23 25 26
5 10 11 12 14 15 25 26 28 29 30
6 10 11 12 13 15 17 27 29 31 32 33 34
7 10 11 13 14 16 18 30 32 34 35 37 38
8 11 12 14 15 17 20 32 35 37 38 40 41
9 11 13 14 16 19 21 35 37 40 42 43 45
10 12 13 15 17 20 23 37 40 43 45 47 48
11 12 14 16 18 21 24 40 43 46 48 50 52
12 13 15 17 19 22 26 42 46 49 51 53 55

5 5 15 16 17 19 20 22 33 35 36 38 39 40
6 16 17 18 20 22 24 36 38 40 42 43 44
7 16 18 20 21 23 26 39 42 44 45 47 49
8 17 19 21 23 25 28 42 45 47 49 51 53
9 18 20 22 24 27 30 45 48 51 53 55 57
10 19 21 23 26 28 32 48 52 54 57 59 61
11 20 22 24 27 30 34 51 55 58 61 63 65
12 21 23 26 28 32 36 54 58 62 64 67 69

6 6 23 24 26 28 30 33 45 48 50 52 54 55
7 24 25 27 29 32 35 49 52 55 57 59 60
8 25 27 29 31 34 37 53 56 59 61 63 65
9 26 28 31 33 36 40 56 60 63 65 68 70
10 27 29 32 35 38 42 60 64 67 70 73 75
11 28 30 34 37 40 44 64 68 71 74 78 80
12 30 32 35 38 42 47 67 72 76 79 82 84

7 7 32 34 36 39 41 45 60 64 66 69 71 73
8 34 35 38 41 44 48 64 68 71 74 77 78
9 35 37 40 43 46 50 69 73 76 79 82 84
10 37 39 42 45 49 53 73 77 81 84 87 89
11 38 40 44 47 51 56 77 82 86 89 93 95
12 40 42 46 49 54 59 81 86 91 94 98 100

8 8 43 45 49 51 55 59 77 81 85 87 91 93
9 45 47 51 54 58 62 82 86 90 93 97 99
10 47 49 53 56 60 65 87 92 96 99 103 105
11 49 51 55 59 63 69 91 97 101 105 109 111
12 51 53 58 62 66 72 96 102 106 110 115 117

9 9 56 59 62 66 70 75 96 101 105 109 112 115
10 58 61 65 69 73 78 102 107 111 115 119 122
11 61 63 68 72 76 82 107 113 117 121 126 128
12 63 66 71 75 80 86 112 118 123 127 132 135

10 10 71 74 78 82 87 93 117 123 128 132 136 139
11 73 77 81 86 91 97 123 129 134 139 143 147
12 76 79 84 89 94 101 129 136 141 146 151 154

11 11 87 91 96 100 106 112 141 147 153 157 162 166
12 90 94 99 104 110 117 147 154 160 165 170 174

12 12 105 109 115 120 127 134 166 173 180 185 191 195
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