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CHAPTER 13

of Chance Encounters by C.J.Wild and G.A.F. Seber

Control Charts

This chapter discusses a set of methods for monitoring process characteristics
over time called control charts and places these tools in the wider perspective of
quality improvement. The time series chapter, Chapter 14, deals more generally
with changes in a variable over time. Control charts deal with a very specialized
type of problem which we introduce in the first subsection. The discussion
draws on the ideas about Normally distributed data and about variability from
Chapter 6, about the sampling distributions of means and proportions from
Chapter 7, hypothesis tests from Chapter 9 and about plotting techniques
from Chapters 2 and 3.

13.1 Introduction

13.1.1 The Setting

The data given in Table 13.1.1, from Gunter [1988], was produced by a
process that was manufacturing integrated circuits (ICs). The observations are
coded measures of the thickness of the resistance layer on the IC for successive
ICs produced. The design of the product specifies a particular thickness, here
205 units. Thus, 205 is the target value. If the thickness of the layer strays
too far from 205 the performance of the IC will be degraded in various ways.
Other manufacturers who buy the ICs to incorporate in their own products
may well impose some limits on the range of thicknesses that they will accept.
Such limits are called specification limits. Any ICs that fall outside this range
are unacceptable to these customers.

So the manufacturer is trying to manufacture ICs with the target resistance-
layer thickness of 205, but despite the company’s best efforts, the actual thick-
nesses vary appreciably. This is typical of the products of any process. No two
products are ever absolutely identical. There are differences due to variation in
raw materials, environmental changes (e.g. humidity and temperature), varia-
tions in the way machines are operating, variations in the way that people do
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things. In addition to variation in the actual units themselves, the measure-
ment process introduces additional variation into our data on the process. As
discussed in Section 6.4.1, a general principle of producing good quality prod-
ucts (and services) is that variability must be kept small. Thus, in the above
example, we want to produce ICs with a resistance-layer thickness close to the
target value of 205 and varying as little as possible.

Table 13.1.1 : Coded Thickness of Resistance Layer
on Integrated Circuita

206 204 206 205 214 215 205 202 210 212 202 208 207 218
188 210 209 208 203 204 200 198 200 195 201 205 205 204
203 205 202 208 203 204 208 215 202 218 220 210
aSource: Gunter [1988]. Data in time order (1st, 2nd, 3rd, ...) reading across rows.
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Figure 13.1.1 : Run chart and histogram of the data in Table 13.1.1.

Run chart

The data in Table 13.1.1 is plotted in two different ways in Fig. 13.1.1.
The left-hand side of Fig. 13.1.1 is a run chart , namely a scatter plot of the
measurements versus the time order in which the objects were produced (1=1st ,
2=2nd , etc.). The data points are linked by lines, a practice which enables us
to see patterns that are otherwise not visible. Run charts provide a useful way
of looking at the data to see if (and how) things have been changing over time.
We add a horizontal line at the position of the target value if we want to see
whether the process is centered on target or straying from target. Alternatively,
we could use a horizontal (center-) line at the position of the mean if we wanted
a visual basis for detecting changes in average level over time.

The right-hand side of Fig. 13.1.1 gives a histogram of the IC thicknesses
which highlights the average level and variability of the whole set of measure-
ments.
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Figure 13.1.2 : The volumes of 25 successive cartons
sampled at 5-min. intervals.

Specification limits

Fig. 13.1.2 charts the volumes of the contents of 2-liter cartons of milk sam-
pled from a production line every 5 minutes. Fig. 13.1.2 has introduced a
new feature, so-called specification limits. These are USL (Upper Specification
Limit) and LSL (Lower Specification Limit). Such limits externally imposed
(e.g. imposed by the customer). Units falling outside these limits are unac-
ceptable and will be rejected.1 It is the manufacturer’s job to come up with
a process that produces units that fall within the specification limits. The
milk-carton process is doing a good job of delivering product that falls within
the specification limits. Fig. 13.1.3 shows 3 processes that are failing to deliver
within specifications for various reasons: the mean level at which process (a)
is producing is too high and would have to be brought down to meet specifica-
tions; process (b) is too variable; and process (c) is too variable and the mean
level is too low.

USL

LSL

USL

LSL

USL

LSL

(a)  Average level too high (b)  Too variable (c)  Average level too low
& too variable

Figure 13.1.3 : Three processes that are failing to meet specifications.

The above ideas apply to more than just manufacturing processes. We can
use run charts and control charts to monitor waiting times for bank customers,
numbers of complaints, error rates in handling insurance claims or ticketing
airline passengers, customer satisfaction ratings, delivery times, and so on.

1Specification limits, which apply only to individual units only, are very different from control
limits (to follow) which indicate the level of variability expected in a process from its past
history and often apply to averages. Charts showing control limits and charts showing
specification limits can look very similar so look carefully at the fine print.
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13.1.2 Statistical stability

A process is statistically stable over time (with respect to characteristic X)
if the distribution of X does not change over time – see Fig. 13.1.4(a). You
may wish to think of this in terms of stem-and-leaf plots constructed from
data collected over separate time intervals (e.g. from different days) being very
similar. Stability enables us to predict the range of variability to expect in our
product in the future.2 We can then try to develop systems that can cope with
this level of variability. With an unstable process like that in Fig. 13.1.4(b),
we have no idea what to expect, making intelligent forward-planning virtually
impossible.
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Figure 13.1.4 : Consecutive distributions of X.
[Modeled on a figure in Process Capability and Continuous Improvement, Ford Motor Company.]

When plotted on a run chart, a statistically stable process bounces about its
center in a random fashion. Non-random behavior tells us that the process is
not statistically stable over time. The IC process plotted in Fig. 13.1.1 is not
stable over time as we see a definite upwards trend in the latter half of the
plot. However, the process in Fig 13.1.2 and all those depicted in Fig. 13.1.5
are stable. How do we know? In Fig. 13.1.5, all observations were sampled
from the same Normal distribution using a computer.

Figure 13.1.5 : Three stable processes.

2This differs from other prediction problems you saw in regression where we were trying to
predict individual values.
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Gross outliers are a sign of an unstable process. The graphs in Fig. 13.1.6
show processes that are unstable in other ways. All are plotted using computer-
generated random numbers from a Normal distribution. In Figs 13.1.6(a) and
(b) the standard deviation was always the same. Halfway along the sequence in
Fig. 13.1.6(a), we began to increase the mean of the distribution sampled from
by a small amount each time an observation was taken. This is an exaggeration
of what might happen if, for example, there was gradual wear in one of the
machine components. In Fig. 13.1.6(b) there is an abrupt change of mean half
way along the sequence.3 This could arise, for example, because one component
has partial failure or there is a change in operator who does not follow the
procedure properly. Fig. 13.1.6(c), shows increased variability in the second
half of the sequence. The same mean level was used throughout, but one third
of the way along the sequence, we began to increase the standard deviation
used. Machine wear could be a possible cause of behavior like that visible in
Fig. 13.1.6(c). There are many other ways in which a process can be unstable.

In the quality literature, a process is said to be in control with respect to
the characteristic4 X if the distribution of X appears to be statistically stable
over time. This name is rather unfortunate as “the process is in control” does
not mean that we are actually making the process behave as we wish. Just
as a stable process is “in control”, an unstable process is out of control, as in
Fig. 13.1.6.

(a)  Mean level drifting
upwards

(b)  Sharp change
in mean level

(c)  Variability increasing

Figure 13.1.6 : Three unstable (out-of-control) processes.

13.1.3 The function of control charts

The run chart provides a picture of the history of the performance of the
process. Control charts will place additional information onto the run chart –
information aimed at helping us to decide how to react, right now, in response
to the most recent information about the process shown in the charts. They
tell us about things we should do, and also about things we should refrain from
doing.

3The first half of the sequence was generated from Normal(µ = 2.01, σ = 0.01) and the second
half from Normal(µ = 2.00, σ = 0.01), cf. the level and variability in the milk example.
4A process can be in control with respect to some characteristics (variables) while others are
out of control.
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The temptation to tamper

Let us go back to the thicknesses of IC resistance layers in Fig. 13.1.1. We
know that the target for the thickness is 205 and we want to have as little
variation about this target as possible. Faced with a variable output from the
process, a natural human response is to tinker with the system. The resistance
layer on this IC is a little thick so let’s change some settings to try and make
the next IC-layer thinner. If the next IC-layer is still too thick make an even
larger adjustment, and an even larger one. If we get one IC where the layer
is too thin, make an adjustment in the other direction and so on. One of the
major discoveries of Walter Shewhart, who invented the first control charts in
the late 1920’s, was that when a process is subject only to variation which
looks random, such tampering with a process only makes things worse (more
variable). In such situations, one should keep one’s hands off the process until
the causes of the variation are well understood. Ever since, control charts have
been helping establish this as common practice in industry.

Looking locally for causes

Another natural human impulse we often have to guard against is the ten-
dency to look around very locally for the causes of a problem. The authors’
country, New Zealand, is a very small country in population terms. Because it
is so small, there is a great deal of variability between the numbers of people
killed on the roads in a holiday weekend one year and the number on the corre-
sponding holiday the next year. At the end of every holiday weekend, a police
official will appear on the television news to explain why the figures turned
out the way they did this year – to explain to us what we have (collectively)
done right or wrong this time. They “look locally” for causes. In other words,
their explanations arise from asking themselves questions like, “What have we
changed recently?” or “What was unusual this time?” It turns out that there
are times when “looking locally” is a good strategy for finding causes of varia-
tion and even more times when it is a bad strategy. Control charts help us tell
these situations apart.

Common-cause versus special-cause variation

When trying to understand the variation evident in a run chart, it is useful to
begin with the idea of stable, background variation which appears random and
is called common-cause variation. (Further variation may be superimposed on
top of this.) Common-cause variation is present to some extent in all processes.
It is an inherent characteristic of the process which stems from the natural
variability in inputs to the process and its operating conditions. When only
common-cause variation is present, adjusting the process in response to each
deviation from target increases the variability. “Looking locally” for causes
of common-cause variation is fruitless. This variability is an inherent charac-
teristic of the way the system operates and can only reduced by changing the
system itself in some fundamental way.
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On the other hand, for variation which shows up as outliers or specific iden-
tifiable patterns in the data, asking questions like, “What have we changed
recently?” or “Did something particularly unusual happen just prior to this
and what was it?” very often turns up a real cause, such as an inadequately
trained operator or wear in a machine. This latter type of variation is classified
as special-cause variation.5 Special-cause variation is unusual variation, so it
makes sense to look for “something unusual” as its cause. The investigation
should take place as soon as possible after the signal has been given by the chart
so that memories of surrounding circumstances are still fresh. If the cause can
be located and prevented from recurring, a real improvement to the process
has been made. In summary, control charts tell us when we have a problem
that is likely to be solved by looking for “something unusual” as its cause.

Reducing common-cause variation

The reduction of common-cause variation is also very important, but control
charts are not designed for this task. Quite different tools and ways of thinking
are required. For example, it may be possible and worth while to control vari-
ability in some inputs to the process or aspects of the operating environment.
In order to do this, however, we must first find out what types of variability in
the inputs and operating environment are most important as causes of variabil-
ity in the end-product. It may be possible to modify some internal parts of the
process. Making changes without knowing what effects they are likely to have
on the product constitutes tampering, with all its ill effects. Making informed
changes requires planned investigation. Methods include observing the effects
of experimental interventions, and also performing observational studies which
relate “upstream” variables (such as measurements on aspects of incoming raw
materials, operators, procedures, machines involved, etc.) to characteristics of
the product. Regression methods are often useful for this. But let us return to
control charts.

Control chart construction – the basic idea

If we start with a process showing a stable pattern of variation, control charts
signal a change from that pattern — when things have started to “go wrong.”
They try, informally, to trade off two sets of costs. We want the signal to come
early enough to avoid accumulating big costs from low-quality production, but
we do not want to react to common-cause variation. So we need some criteria
for deciding whether what we are seeing is only background variation or whether
the process is starting to go out of control.

Normal distribution: 99.7% of observations fall within µ ± 3 σ
(3-sigma limits)

5Also called assignable cause.
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Recall from Section 6.2.1 that 99.7% of observations sampled from a Normal
distribution fall within 3 standard deviations of the mean, i.e. between the
limits µ ± 3σ. Thus, if observations started to appear outside these limits
then we would suspect that the process is no longer in control, and that the
distribution ofX had changed.6 What if the distribution ofX is not Normal? A
famous result called the Chebyshev’s inequality tells us that, irrespective of the
distribution, at least 89% of observations fall within the 3-sigma limits.7 The
probability of falling within the 3-sigma limits increases towards 99.7% as the
distribution becomes more and more Normal. Many physical measurements are
approximately Normally distributed and we shall improve the approximation
by using means of groups of observations (see Section 13.2.1). Thus, 3-sigma
limits give a simple and appropriate way of deciding whether or not a process is
in control. You might ask why not use narrower limits such as 2-sigma limits.
Experience has shown that when 2-sigma limits are used, the control chart
often indicates special causes of variation that cannot be found. When 3-sigma
limits are used, a diligent search will often unearth the special cause.8

We will learn about three kinds of control charts: x-charts which are used
for looking for a change in the average level; R-charts to look for changes in
variability; and p̂-charts which monitor proportions (e.g. proportion of items
which are defective).9 For most of the chapter, we will concentrate on points
falling outside the 3-sigma limits as a signaling the likely presence of a special
cause. Section 13.6 will introduce a range of patterns to look for which are also
signals of the presence of special causes.

Quiz for Section 13.1
1. What is a run chart?
2. What are the main purposes of control charts?
3. Two types of variation were described. What are they?
4. What type of variation are control charts intended to detect? What do we do when we

detect evidence of such variation?
5. When all variation is common-cause variation, there is something we should not do with

the process. What is it and why?
6. How should we approach the reduction of common-cause variation?
7. What is meant by a process being “in control”? What does “in control” not mean?

6Thus, control charts can be thought of as visual hypothesis tests.
7Chebyshev’s inequality: pr(|X − µ| < kσ) > 1 − (1/k)2 ≈ 0.89 when k = 3. (It applies to
distributions that have a finite standard deviation.)
8The above is an over-simplification. One has to trade off false-positive rates (expending time
and effort looking and not finding anything) and false-negative rates (doing nothing when
one should have acted) in the environment in which one is working. It may also depend
on the frequency with which data is generated. Less stringent 2-sigma limits are often used
for processes that generate data only very slowly (e.g. monthly accounts). Some processes
generate huge numbers of data points each day, and sometimes even 4-sigma limits are used
for these.
9p̂-charts are conventionally called p-charts. The change from p to p̂ emphasizes the fact that
sample proportions are charted.
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8. Describe one advantage of having a stable process over having an unstable process.
9. Why do we use 3-sigma limits and not 2-sigma limits?

10. What percentage of observations on a stable, Normally-distributed process fall within
3-sigma limits?

13.2 Control Charts for Groups of Data

13.2.1 Monitoring average level: the x–chart
The x-chart is used to look for changes in the average value ofX-measurements

as time goes on. As the measured characteristic of the process may not be Nor-
mally distributed, we make use of the Central Limit effect by working with sam-
ple means instead of individual X-values so that we are working with quantities
that have a distribution that is closer to Normal. Typically data are collected
in at least 20 subgroups of size 3 to 6 (typically 5) measurements and the mean
of each of subgroup is computed. Recall from Section 7.2 that if we are sam-
pling from a distribution with mean µ and standard deviation σ, the sample
means from subgroups of n observations vary according to a distribution with
mean and standard deviation given by:

(Subgroups of size n) µ
X̄

= µ, σ
X̄

=
σ√
n

.

and almost all subgroup means will lie within the 3-sigma limits:
(3-sigma limits for subgroup means) µ

X̄
± 3 σ

X̄
.

If we knew the true values of µ and σ, we would use µ
X̄

+ 3σ
X̄

as the upper
control limit (UCL), and µ

X̄
− 3σ

X̄
as the lower control limit (LCL). New

subgroup means outside this range would be considered to provide a signal that
the process was out of control. In practice however, one never knows µ and σ
and the control limits must be estimated from the data.

As well-known American statistician J. Stuart Hunter likes to point out in
his seminars, each time a new subgroup mean is plotted and one checks whether
it is inside the control limits, one is essentially performing an hypothesis test
graphically. The hypothesis is that the new mean comes from a distribution
with mean µ

X̄
. The alternative is that the mean has changed. Using 3σ

X̄
limits corresponds to rejecting the hypothesis only for P -values considerably
smaller10 than 5%. One reason for being very conservative in this sense is
to protect against multiple-comparisons problems as so many tests are being
performed (each new mean plotted corresponds to another test).

10The minimum P -value for rejection would be 0.3% in the idealized situation in which the
data was coming from a Normal distribution with known standard deviation.
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Example 13.2.1 Telstar Appliance Company uses a process to paint refrig-
erators with a coat of enamel. During each shift, a sample of 5 refrigerators
is selected (1.4 hours apart) and the thickness of the paint (in mm) is deter-
mined. If the enamel is too thin, it will not provide enough protection. If
it’s too thick, it will result in an uneven appearance with running and wasted
paint. Table 13.2.1 below lists the measurements from 20 consecutive shifts.
In the language of the previous paragraph, a sample of 5 from the same shift
is a subgroup and we have 20 subgroups. Fig. 13.2.1 provides an x-chart for
this data.

Construction of the x-chart

Suppose we have nk observations made up of k subgroups each of size n. In
Example 13.2.1, we have k = 20 subgroups of size n = 5.

The center line of the x-chart (cf. Fig. 13.2.1) is plotted at the level of the
sample mean (average) of the k subgroup means. This value11 is denoted by x.
This is a natural estimate of the true µ

X̄
= µ. In Example 13.2.1., x = 2.514

(see Table 13.2.1).

The control limits are estimates of µ
X̄
±3σ

X̄
. The upper control limit (UCL)

is plotted at the level x+ 3σ̂
X̄

and the lower control limit (UCL) is plotted at
x− 3σ̂

X̄
where σ̂

X̄
is an estimate of σ

X̄
= σ/

√
n.

To construct an estimate of σ
X̄
, we need an estimate of σ. The estimates,

σ̂
X̄
, that are most often used in practice are given in Table 13.2.2. Estimate (i)

is equivalent to estimating σ by s which is the sample mean of the k subgroup
standard-deviations. In Table 13.2.1, we have 20 subgroups. Their standard
deviations are given in the final column of the table and their average is s =
0.3101. However, s is a biased estimate12 of σ. The d1 given in the formula
is a correction factor chosen so that s/d1 is an unbiased estimate of σ when
we are sampling from a Normal distribution. Values of d1 are tabulated in
Table 13.2.3.13

11Note that for equal subgroup sizes, if we averaged all the nk individual observations, we
would get the same value (x).
12Although s2 values have population mean σ2, s does not have mean σ.
13The most obvious candidate for an estimate of σ is s, the sample standard deviation of all nk
individual observations. However, this value is not used. The average of the batch standard
deviations is a measure of within-subgroup variability. The overall standard deviation also
reflects between-subgroup variation. In practice, control charts often have to be set up in
less than perfect circumstances and there may be special causes acting from one subgroup
to the next during the set-up phase. It is the within-subgroup variability that one wants to
estimate.
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Table 13.2.1 : The Thickness of Paint on Refrigerators
for Five Refrigerators from Each Shift

(Subgroup) Subgroup

Shift no. Thickness (in mm) Mean Range Std Dev.

1 2.7 2.3 2.6 2.4 2.7 2.54 0.4 .1817
2 2.6 2.4 2.6 2.3 2.8 2.54 0.5 .1949
3 2.3 2.3 2.4 2.5 2.4 2.38 0.2 .0837
4 2.8 2.3 2.4 2.6 2.7 2.56 0.5 .2074
5 2.6 2.5 2.6 2.1 2.8 2.52 0.7 .2588
6 2.2 2.3 2.7 2.2 2.6 2.40 0.5 .2345
7 2.2 2.6 2.4 2.0 2.3 2.30 0.6 .2236
8 2.8 2.6 2.6 2.7 2.5 2.64 0.3 .1140
9 2.4 2.8 2.4 2.2 2.3 2.42 0.6 .2280

10 2.6 2.3 2.0 2.5 2.4 2.36 0.6 .2302
11 3.1 3.0 3.5 2.8 3.0 3.08 0.7 .2588
12 2.4 2.8 2.2 2.9 2.5 2.56 0.7 .2881
13 2.1 3.2 2.5 2.6 2.8 2.64 1.1 .4037
14 2.2 2.8 2.1 2.2 2.4 2.34 0.7 .2793
15 2.4 3.0 2.5 2.5 2.0 2.48 1.0 .3564
16 3.1 2.6 2.6 2.8 2.1 2.64 1.0 .3647
17 2.9 2.4 2.9 1.3 1.8 2.26 1.6 .7021
18 1.9 1.6 2.6 3.3 3.3 2.54 1.7 .7829
19 2.3 2.6 2.7 2.8 3.2 2.72 0.9 .3271
20 1.8 2.8 2.3 2.0 2.9 2.36 1.1 .4827

Column mean = 2.514 0.77 .3101

(x ) (r) (s)

Table 13.2.2 : Commonly Used Estimates of σ
X̄

(i) σ̂
X̄

=
1
d1

s√
n
, where s is the mean of the subgroup std dev’s

(ii) σ̂
X̄

=
1
d2

r√
n
, where r is the mean of the subgroup ranges

Values of d1 and d2 depend upon the subgroup size n.
A range of values are tabulated in Table 13.2.3.
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Figure 13.2.1 : x–chart for the data in Table 13.2.1.
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The value of σ̂
X̄

given as estimate (ii) in Table 13.2.2 corresponds to esti-
mating σ using the information about spread contained in the average ofthe
subgroup ranges, r. It turns out that, for a Normal distribution, r/d2 is an
unbiased estimate of σ. Values of d2 are also tabulated in Table 13.2.3.

Because much less computation is required by method (ii) than method (i),
method (ii) is usually used for charts constructed and updated by hand. It
works very well with the small subgroup sizes used in practice. However,
method (i) is better for computerized charts as s provides a more precise esti-
mate of σ and is less affected by outliers.

Example 13.2.1 cont. For the data in Table 13.2.1, x = 2.514. The subgroup
ranges are given as the second to last column of Table 13.2.1. The average of
the subgroup ranges appears at the bottom of the column. Thus, we see that
r = 0.77. Since n = 5, Table 13.2.3 tells us that d2 = 2.3259. Thus,

σ̂
X̄

=
1
d2

r√
n

=
1

2.3259
0.77√

5
= 0.14805,

UCL = x+ 3 σ̂
X̄

= 2.96,

LCL = x− 3 σ̂
X̄

= 2.07.and

The control chart is drawn in Fig. 13.2.1 and we see that we have a point (the
11th) outside the control limits indicating that the process is not in control.
Subsequent points all look fine making this appear to be an isolated problem.
Nevertheless, we would try to find out what caused the problem with the 13th
observation and prevent the recurrence of such problems.

Even having all of the sample means lie between the control limits is no
guarantee that the process is control. There may still be some internal features
of the chart which suggest instability and the presence of special causes. Some
rules for detecting such problems are discussed later in Section 13.6. If there
are points outside the control limits, then we should try and find special causes
for these points. If causes are found then the offending points can be removed
and the center line and control limits re-calculated.

Use of projected control limits

In Example 13.2.1, we used all of our data to construct the control limits. In
practice, it is usual to have a set-up phase of perhaps 20 or 30 subgroups, from
which the center line and control limits are calculated. If the process has been
reasonably stable over the set-up phase, a chart will be constructed plotting
the set-up data and the corresponding limits projected out into the future, as
in Fig. 13.2.2. Future data points will be plotted on that chart to monitor the
behavior of the process as time goes on. The limits will not be updated unless
there has been a substantial change in the process.
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UCL

LCL
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Subgroup Number
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set-up data

Subsequent dataSet-up data

Figure 13.2.2 : Projected Control Limits.

Table 13.2.3 : Constants for the Construction of Control Chartsa

( 3
d1
√
n

) ( 3
d2
√
n

)

n d1 d2 Ab
1 Ab

2 D3 D4 B3 B4

2 1.7725 1.1284 1.1968 1.8800 0.0000 3.2665 0.0000 10.8276
3 1.3820 1.6926 1.2533 1.0233 0.0000 2.5746 0.0010 6.9078
4 1.2533 2.0588 1.1968 0.7286 0.0000 2.2820 0.0081 5.4221
5 1.1894 2.3259 1.1280 0.5768 0.0000 2.1145 0.0227 4.6167
6 1.1512 2.5344 1.0638 0.4832 0.0000 2.0038 0.0420 4.1030
7 1.1259 2.7044 1.0071 0.4193 0.0757 1.9243 0.0635 3.7430
8 1.1078 2.8472 0.9575 0.3725 0.1362 1.8638 0.0855 3.4746
9 1.0942 2.9700 0.9139 0.3367 0.1840 1.8160 0.1071 3.2656

aThis table is also reproduced in Appendix A13 for quick reference.
bThe Ai columns can be used to speed up the calculation of the x-chart since,

using s, 3 σ̂
X̄

= 3
d1
√
n
s = A1s. Similarly, using r, 3 σ̂

X̄
= A2r.

Exercises on Section 13.2.1

1. A company produces dials for a machine. These dials are supposed to have
a constant diameter. To check on the production process, the first 4 dials
are selected every half hour for 12 hours giving a total of 96 observations. It
was found that x = 51.12 mm and r = 0.46 mm. Find the upper and lower
control limits.

2. Do you think that just looking for points which are outside the control limits
provides enough evidence for the existence of an unstable process? Suppose
someone tossed a coin ten times and you got an alternating sequence of heads
and tails such as HTHTHTHTHT . Would you think that just chance is
at work? (These ideas are explored further in Section 13.6.)

3. In Example 13.2.1, the out-of-control mean given for shift 11 was found to
be due to an operator error. Recurrence has been prevented by giving the
operator additional training. Delete this point from the data and recompute
the center line and the control limits. Are your conclusions any different?
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13.2.2 Control Charts for Variation: the R–chart
An x–chart focuses attention on the constancy of average level (µ) and is not

good at detecting changes in variability (σ).14 An R-chart (or range chart) is
specifically designed for detecting changes in variability. This time we plot the
subgroup ranges, ri, rather than the subgroup means. Fig. 13.2.3 is an R-chart
for the refrigerator data in Table 13.2.1.

If µ
R

and σ
R

are respectively the mean and standard deviation of the range
R of n observations sampled from a Normal distribution, then it can be shown
that σ

R
is of the form σ

R
= dµ

R
for some constant d. The desired upper control

limit (UCL) for the subgroup ranges is µ
R

+ 3σ
R
. Now,

µ
R

+ 3σ
R

= µ
R
(1 + 3d) which is of the form D4µR

.

Similarly, the lower control limit (LCL) is of the form D3µR
. The formulae for

UCL and LCL given on the right of Fig. 13.2.3 follow when we estimate µ
R

by
the sample mean of the subgroup ranges, namely r. Values of D3 and D4 are
tabulated in Table 13.2.3. Negative values of D3 are not permitted as a sample
range cannot be negative. Consequently, negative values are set to zero.15

In using the R–chart, subgroup ranges lying outside the control limits indi-
cate that the process is “out of control”. Trends in the R–chart may indicate
a problem like wear in the machine.16

0.0

1.0

2.0

R
an

ge
 (R

)

0 5 10 15 20
sample number

UCL

LCL

R–chart

UCL = r+3σ̂
R

= D4r

Center Line: r

LCL = r−3σ̂
R

= D3r

[See Table 13.2.3 for values of
D3 and D3.]

Figure 13.2.3 : R–chart for the data in Table 13.2.1.

Example 13.2.1 cont. We refer again to the refrigerator data in Table 13.2.1.
From Table 13.2.1, r = 0.77 and this forms the center line. Table 13.2.3 tells
us that when n = 5, D3 = 0 and D4 = 2.1145. Thus we have,

UCL = D4r = 1.63 and LCL = D3r = 0.

14e.g. if µ is constant but σ occasionally becomes larger, then the process could still appear
to be in control on an x-chart because of the averaging effect.
15Note from Table 13.2.3 that D3 = 0 for n less than 7.
16When s is readily calculated we can construct a so-called s–chart using s instead of r and
constants B3 and B4 instead of D3 and D4 (see Gitlow et al. [1995, p. 246]).
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The control chart, given in Fig. 13.2.3, clearly indicates that the process is out
of control, and not just because one point is above UCL. The range seems
to be steadily increasing, telling us that the variability of the original paint
thickness is increasing over time. This picture is in strong contrast to the x–
chart of Fig. 13.2.1 which seems to suggest that things aren’t too bad. Clearly
an x–chart is not sufficient on its own and needs to be supplemented with an R–
chart. To sum up, the painting process that produced the data in Table 13.2.1
is out of control, not because of changes in mean thickness, but because of
increasing variability in paint thicknesses.

Exercises on Section 13.2.2

1. Would you expect D4 to increase or decrease with n, the subgroup size?
Check your reasoning by referring to Table 13.2.3.

2. In the Exercises 13.2.1, problem 1, the subgroups of size 4 gave r = 0.46 mm.
Compute the control limits.

13.2.3 Control Charts for Proportions: p̂–chart

Example 13.2.2 Table 13.2.4 gives the number of units produced by a
company each week during part of 1994 which require rework at certain stages
of production because of faults. Rework is additional work required to bring
a substandard unit up to standard and is an additional cost one wishes to
avoid. We omit further details for reasons of confidentiality. The weeks are
consecutive except for the last one (in 1995) when the factory closed down over
the Christmas holiday period.17 We want to chart the percentages requiring
rework over time to see whether the process is in control. Such a chart is given
in Fig. 13.2.4.

Example 13.2.2 is just one of many examples in which we want to chart
the proportion of items produced by a process that are defective in some way.
The resulting charts are traditionally called p–charts. However, they monitor
the behavior of the sample proportion (p̂ in our notation) of defective items
over time. We select subgroups of n items and compute the sample proportion
(p̂) of defectives for each subgroup. We then plot each successive subgroup
proportion on the chart, as in Fig. 13.2.4.

The limits µ
P̂
± 3σ

P̂
for p̂ are p ± 3

√
p(1−p)
n . If the process is in control,

then p, the unknown true probability that an item is produced defective, is
the same for all items regardless of what subgroup they come from. If we take

17Christmas is in the summer in NZ and many factories shut down for 2 or 3 weeks.
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Table 13.2.4 : The Number of Units per Week Requiring
Rework at Certain Stages of Production

Week ending Requiring Total Proportion
(Day/month) Subgroup No. rework production (p̂)

7/5 1 35 3662 .0096
14 2 52 3723 .0140
21 3 37 3633 .0102
28 4 31 3664 .0085
4/6 5 23 3448 .0067

11 6 31 2630 .0118
18 7 21 3580 .0059
25 8 30 3278 .0092
2/7 9 20 3797 .0053
9 10 20 3893 .0051

16 11 40 3991 .0100
23 12 65 3760 .0173
30 13 58 3590 .0162
6/8 14 78 3108 .0251

13 15 43 3759 .0114
20 16 30 3606 .0083
27 17 29 3530 .0082
3/9 18 56 3621 .0155

10 19 41 3888 .0105
17 20 32 3854 .0083
24 21 81 3864 .0210
1/10 22 74 3846 .0192
8 23 24 3856 .0062

15 24 42 4072 .0103
22 25 35 3693 .0095
29 26 15 3394 .0044
5/11 27 18 4157 .0043

12 28 25 4012 .0062
19 29 57 3698 .0154
26 30 57 3658 .0156
3/12 31 42 3236 .0130

10 32 71 3913 .0181
17 33 40 3655 .0109
24 34 24 3542 .0068
21/1 35 27 2356 .0115

Totals: 1404 126967
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Subgroup number

UCL

LCL

0.000

0.020
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p̂–chart

UCL = p+ 3
√

p(1−p)
n

Center Line: p

LCL = p− 3
√

p(1−p)
n

Figure 13.2.4 : p̂–chart for the data in Table 13.2.4.
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k (e.g. at least 20) subgroups of data all of the same size n so that the total
number inspected is nk, then a natural estimate of p is the average of all of the
subgroup proportions,

p̄ =
1
k

(p̂1 + p̂2 + · · ·+ p̂k)

=
1
nk

(np̂1 + np̂2 + · · ·+ np̂k)

=
Total number of defectives

Total number inspected
.

The estimate p leads to the control limits given to the right of Fig. 13.2.4. The
latter expression for p can be used even for unequal subgroup sizes. We note
that if LCL falls below zero18 we use LCL = 0.

How large should the subgroup size be? In order for the Central Limit effect
to begin to operate, n should be such that19 np ≥ 2, which often means that
n > 50. Since n is usually large, more data is needed for a p–chart than for x–
and R–charts.

Unfortunately, the subgroup size n is not constant in Example 13.2.2. The
number of items produced in week i, denoted ni, varies somewhat from week
to week. So what value of n do we use to calculate the control lines? The
most accurate method would be to work out individual values of UCL and
LCL using ni. However, this ignores the motivational impact of a simple easy-
to-understand chart. An alternative approximation is to use n, the average
value of n, in calculating UCL and LCL. When will this approximation be
satisfactory? One rule of thumb is to use it when n does not vary from n by
more than about 25% of n. Once the control chart has been plotted, any point
i near or outside the limits could be checked by recalculating the limits using
ni.

Example 13.2.2 cont. Using the totals in Table 13.2.4, the center line for
our p̂–chart is plotted at

p =
Total number of defectives

Total number inspected
=

1404
126967

= 0.011058.

(Center Line)

n =
∑
ni
k

=
Total production

Number of weeks observed
=

126967
35

= 3627.63.Also,

18We then only need to check whether UCL is exceeded or not as we can never fall below
LCL, though we may get a p̂ equal to zero when there are no defects in a subgroup.
19A variety of rules are suggested in the literature e.g. Gitlow et al. [1995] suggest using
np ≥ 2. This implies that we should expect to find at least 2 defectives in a subgroup. Our
previous 10% rule for approximate Normality of the underlying Binomial distribution is too
conservative for control chart applications.
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A variation of 25% on this would give a range of ni-values of about 2700 to 4500
which covers all the values of n except two, namely subgroups 6 and 35 (which
were based on shorter weeks because of public holidays). We will therefore use
the mean value of n, namely n, to calculate the control limits. Hence, using
p = 0.011058 and n = 3627.63, we have

UCL(p̂) = p+ 3

√
p(1− p)

n
= 0.0163,

UCL(p̂) = p− 3

√
p(1− p)

n
= 0.0058.and

The resulting p̂–chart is given in Fig. 13.2.4. We see that the process is out
of control. Since n varies we could look at each point outside the limits and
recompute UCL and LCL using the correct value of ni. For example, for
subgroup 12, n12 = 3760 and

UCL(p̂12) = 0.011058 + 3

√
0.011058(1− 0.011058)

3760
= 0.0162,

which is slightly less than20 UCL(p).
This example has used historical data to illustrate the calculations and looked

for evidence of out-of-control behavior in the history. In practice, historical data
is used to set up limits for charting the subsequent behavior of the process and
action is taken as soon as out-of-control behavior is seen.

Table 13.2.5 : Forestry Data

No. Total % No. Total %.
Month defect. logs defect. Month defect. logs defect.

Nov/93 224 5708 3.92 Aug/94 253 4064 6.23
Dec 181 3553 5.09 Sep 172 3577 4.81
Jan/94 187 3293 5.68 Oct 172 3711 4.63
Feb 122 2808 4.34 Nov 248 3944 6.29
Mar 134 2924 4.58 Dec 171 2925 5.85
Apr 235 3472 6.77 Jan/95 261 4013 6.50
May 151 2782 5.43 Feb 263 4944 5.32
Jun 227 4051 5.60 Mar 184 3356 5.48
Jul 226 4493 5.03 Apr 174 3835 4.54

Exercise on Section 13.2.3
The data in Table 13.2.5 relate to sampling audits carried out on a monthly
basis on samples of logs produced by a forestry operation. Each month,

20In fact for points that appear out of control, we only need to recompute the limits for those
points in which ni < n. When ni > n, the accurate limits are closer to the center line than
those drawn on the chart and a point which is out of control with the drawn limits will be
even more out of control with respect to the accurate limits. Similarly, when we looking at
points just inside the drawn limits, we need only recalculate limits if ni > n.
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as shown, a number of logs (from a number of subcontractors) is sampled,
and the number of defective logs is noted. (Defects may be : wrong length,
damage to the surface, wrong small-end diameter, wrongly classified, too
great a degree of “sweep” and knot-holes too large). Draw a p̂–chart and
draw in the center line and the control limits. What do you conclude?
(Compute any individual control limits that you think you might need.)

Quiz for Section 13.2
1. Define the three lines used on a control chart for means.

2. At least how many subgroups should be used for constructing a control chart for means?

3. Why do we need both an x–chart and an R–chart?

4. What size subgroups should we use for a p̂–chart?

13.3 Getting On With the Job
Generally a team approach is needed for establishing control charts. In a

complex process with many parts, it is better to have several charts spread
throughout the process at strategic points than a single chart at the end.
Having several charts makes it easier to track down special causes when their
presence has been signalled. Once a chart signals that the process is “out of
control”, immediate action is necessary to find the cause while memories of
surrounding circumstances are fresh – otherwise the whole idea of a control
chart is negated. It is much harder to look for special causes some time after
the event than immediately. As the charts tend to be very conservative, such
a signal generally means a problem. Once a signal occurs, it is very tempting
to take another sample to verify the signal. This should be avoided as it can
lead to accepting that the process is stable when it is not.

The choice of subgroup, which requires choosing the number and frequency of
measurements and the time between subgroups, is important as measurements
in a subgroup should all be affected equally if a special cause is acting. Variation
within a subgroup should be largely due to common causes only. How far
apart in time should measurements be made in a subgroup? The wider they
are apart, the less sensitive is the mean of the subgroup in picking up changes
as the effects of the changes tend to get averaged out. The mean would be
most sensitive when the measurements are close together, such as consecutive
observations, so that all the measurements in a subgroup are observed under
as similar conditions as possible. Initially the measurements could be more
widely spaced to try and pick up special causes with large effects. Once these
are removed the spacing could be reduced.

The system of measurement needs to be reliable and reproducible so that
different people should obtain almost identical measurements for a given object.
Clearly it is a good idea to carry out a preliminary study of the measurement
system.
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We have noted how charts are formed using historical data, or data from a
set-up phase, at which point lines are added and projected into the future.21

Periodically, the lines would need to be updated using past data collected
when the process was in control: out of control points can be ignored in the
calculations. In setting up (or updating) a chart, any points outside the control
limits should be checked to see if they are due to some special cause. All out-of-
control points for which the cause can be identified (e.g. an operator error that
is unlikely to recur) are removed and then the control lines are recalculated.
When points are removed and the control lines recalculated, other points may
now appear to be out of control. However, the process of removing points and
recalculating limits is usually only performed once.

It is helpful to have a standard form for entering the data and constructing
the chart. This will help cut down transmission errors. It is also useful to join
up consecutive points, as we have done, to highlight any trends.

Quiz for Section 13.3
1. If a chart signals that the process is out of control for 1 point out of 15, which of the

following is the correct action: (a) observe further points to see if the problem persists,
(b) wait until the end of the run and take a look at the overall picture, or (c) look for a
special cause immediately?

2. In choosing a suitable subgroup, what conditions would you like the measurements in a
subgroup to satisfy?

3. How would you determine the time period between subgroups?
4. In using a control chart, when do you redraw the center line and control limits?
5. If both the x–chart and the R–chart are out of control, which one should be dealt with

first?

13.4 Control Charts for Single Measurements
Example 13.4.1 A company involved with the marketing of a range of plastic
products has recorded the number of customer complaints on a monthly basis.
The data are given in Table 13.4.1 (ignore the “|diff.|” column for the time
being).

Sometimes, as in Example 13.4.1, data may be available only weekly, monthly,
or even yearly so that we do not get sufficient data quickly enough to be able
to form subgroups. In this case we are forced to construct a control chart using
just individual measurements of the form µ̂

X
± 3σ̂

X
. (Note, however, that if a

suitable way of grouping the data is available, it is always better to use the x–
and R–charts as they are more sensitive in detecting special causes.)

The center line of the chart based on single observations (the “individuals
chart”) is drawn at µ̂ = x, the sample mean of all the observations. The main

21We do not redraw the chart after each point is calculated, which would lead to a new center
line and new limits each time.
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problem in constructing an individuals chart is that of estimating variability.
One measure is based upon the average moving range mR which is found by
taking all the unsigned differences between consecutive measurements (e.g. the
“|diff|” column in Table 13.4.1) and then averaging.22 It turns out that we can
estimate 3σ

X
by 2.66m

R
. This leads to the control lines given to the right of

Fig. 13.4.1. Usually we would want at least 20 measurements.23 The resulting
chart does not detect changes in variability directly, though very long lines
between consecutive points on the chart indicate instability.

Where observations are very costly to get, or the time period between obser-
vations is long, we may end up with a lot less than 20 observations. In this case
it is preferable to use 2-sigma limits in the control chart rather than 3-sigma
limits for greater sensitivity (i.e. use x ± 1.77mR).

Table 13.4.1 : The Number of Customer Complaints per Month
for 31 Months (June 1992 to December 1994 inc.)

Month No. |diff.| Month No. |diff.| Month No. |diff.|
1 30 12 26 9 23 34 18
2 26 4 13 21 5 24 28 6
3 18 8 14 34 13 25 23 5
4 17 1 15 41 7 26 34 11
5 40 23 16 33 8 27 29 5
6 34 6 17 40 7 28 23 6
7 18 16 18 30 10 29 35 12
8 26 8 19 11 19 30 50 15
9 23 3 20 18 7 31 27 23

10 47 24 21 31 13
11 35 12 22 52 21
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Figure 13.4.1 : Individuals chart for the observations in Table 13.4.1.

22If there are k observations we use a divisor of k−1 as there are k−1 consecutive differences.
23Because of the variability of single observations, Gitlow et al. [1995] recommend at least
100 observations. However, this may not always be possible.
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Example 13.4.1 cont. For the data in Table 13.4.1, the mean of the 31
observations is x = 30.13 and the mean of the unsigned differences between
consecutive observations (the |diff.| column in the table) is

mR =
1
31

(4 + 8 + · · ·+ 23) = 10.833.

The control lines plotted in Fig. 13.4.1 are:

UCL = x + 2.66mR = 58.95
LCL = x − 2.66mR = 1.31 .and

From the control chart given in Fig. 13.4.1 we see that all the points lie within
the control limits. This suggests that the situation is stable with regard to the
number of customer complaints.

13.5 Specification Limits: Keeping the Customer Satisfied

The following distinctions between the purposes of specification limits and
control limits are very important.

Specification limits are externally imposed by the customer.
They apply to individual units.

Control limits indicate the limits of variability, in a process
under control, which we would expect from its past history.

They often apply to subgroups (e.g. subgroup mean).

A process may be in control but not satisfy the manufacturing specifications
USL and LSL and vice-versa. Specification limits, which apply to individual
units, should not appear on a chart constructed using subgroup means. Having
all the subgroup means lying within specification limits could give a false sense
of security. It is actually possible to have all measurements in a subgroup lying
outside the specified limits but have the subgroup average within the limits.
For example, the numbers -3.4, 4.5, 3.2, and -4.3 have a mean of zero.

If a process is under control but not delivering within specification limits,
fundamental changes are required that are not indicated by the charts. It is
often easier to change the mean level of a process than its variability. We can
see whether USL and LSL lie outside the corresponding control limits for single
observations, namely µ± 3σ which is estimated by x± 3σ̂. It is also helpful to
compare USL − LSL with 6σ̂ to see if the process is capable of satisfying the
specifications if it is centralized properly.
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13.6 Looking for Departures
We have used the phrase “in control” in a technical sense only of points lying

between two lines. However this does not necessarily mean that the distribution
of X is actually stable. The combination of having 3-sigma limits, which are
very conservative, and a small subgroup size (e.g. 3 to 6) means that the x–
chart will not be sensitive to small shifts in the centering of the process. In the
case of an R–chart there may be a steady reduction in variability. For, example
with processes where the skill of the operator has a major influence on s, the
mere introduction of a control chart can often cause a reduction24 in σ.

We will now discuss some additional indicators of out of control behavior,
namely criteria other than points lying outside the control limits. If the process
is stable with a distribution with mean µ that is close to being symmetric, then
the probabilities of a point lying above or below the center line, respectively,
are both approximately one half. Observing each point on the chart is then like
tossing a fair coin, with “heads” referring to obtaining an observation above the
center line and “tails” referring to below the center line. The sequence of the
signs of points relative to the center line can then be represented by a sequence
of heads and tails. Recall from Section 5.3 that where Y is the number of heads
in a sequence of n tosses of a fair coin, then Y ∼ Binomial(n, p = 0.5). If there
are any trends due to special causes, for example x steadily increasing so that
“heads” becomes more likely, then we will start seeing runs of heads which have
a low probability under the assumption of a fair coin. Grant and Leavenworth
[1980] suggest looking for special causes if any of the following sequences of runs
on the same side of the center line occurs: (a) 7 or more consecutive points on
the same side; (b) 10 or more out of 11 consecutive points on the same side;
(c) 12 or more out of 14; and (d) 14 or more out of 17 consecutive points on
the same side of the center line. The probabilities of obtaining these events in
a process under control are:25 (a) 0.016; (b) 0.012; (c) 0.013; and (d) 0.013.
As these probabilities are small (of the order of 1%), the occurrence of any of
the above events would suggest a change in the process, possibly a shift in the
process mean.

A whole range of rules for detecting other kinds of shifts have been developed
and eight of these are described by Nelson [1984]. Assuming Normality, each
of the eight patterns has a probability of less than 0.005 of occurring when the
process is in control. His first four basic rules are:

(i) one point outside the control limits;

24Often, this may just be a Hawthorne effect – a temporary change in behavior due to the
awareness of being watched which tends to disappear as the subject becomes accustomed to
this.
25All probabilities from Y ∼ Binomial(n, p = 0.5):
(a) pr(Y = 0) + pr(Y = 7) with n = 7; (b) pr(Y ≤ 1) + pr(Y ≥ 10) with n = 11;
(c) pr(Y ≤ 2) + pr(Y ≥ 12) with n = 14; (d) pr(Y ≤ 3) + pr(Y ≥ 14) with n = 17.
These probabilities apply to runs in the next sequence of points and not runs occurring
somewhere in a longer sequence of observations. The latter are much harder to compute.
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(ii) 9 points in a row above or below the center line;
(iii) 6 points in a row steadily increasing or decreasing; and
(iv) 14 points in a row alternating up and down (not necessarily crossing the

center line).
The trend indicated by (ii) may suggest tool wear, improved training for the
operator, or a gradual shift to new materials etc. while (iv) could indicate
too much adjustment going on after each sample. The overall probability of
getting a false signal from one or more of the four tests is about 1%. These
rules are demonstrated in Figs 13.6.1(a)-(c). The point at which one of the
above patterns has occurred is indicated by an arrow. Clearly one should look
out for any abnormal pattern of points.

(d)  Find out-of-control points

(a)  1 point out of control by Rule (ii) (b)  2 points out of control by Rule (iii)
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(c)  1 point out of control by Rule (iv)

Figure 13.6.1 : One point out of control by virtue of rule (ii).

Two further tests are suggested when it is economically desirable to have
early warning. These will raise the probability of a false signal to about 2%.
They are based on dividing the region between the control limits into 6 zones,
each 1-sigma wide, with three above the center line and three below. The top
three are respectively labeled A (outer third), B (middle third) and C (inner
third), and the bottom three are the mirror image. The two additional rules
are then:
(v) 2 out of 3 points in a row in zone A or beyond, and
(vi) 4 out of 5 points in a row in zone B or beyond.
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Rules (v) and (vi) are appropriate when there may be more than one data
source. We shall not go into details.

Clearly a variety of rules are possible and different handbooks will have some
variants of the above. Also there are some redundancies in the above rules as
one rule can sometimes include another. The important thing is that these
formal rules should not be followed slavishly. Anything unusual in the pattern
of points is a signal to go hunting for a special cause. For the exercises in this
book we shall confine ourselves to just rules (i)–(iv).

Exercise on Section 13.6.1 According to the rules (i)–(iv) there are 6
points out of control in Fig. 13.6.1(d). Can you find them?

Quiz for Sections 13.4 to 13.6
1. Describe a situation where single observations rather than averages have to be used.

(Section 13.5)

2. What is the essential distinction between specification limits and control limits?

3. Why is it best not to include specification limits on a chart for averages? (Section 13.6)

4. List six rules for determining whether a process is in control or not. Which four are we
going to use? (Section 13.7)

13.7 Summary
1. A run chart for a process is a graph in which the data are plotted in

the order in which they were obtained in time, and consecutive points are
joined by lines.

2. Control charts are useful for
• conveying a historical record of the behavior of a process;
• allowing us to monitor a process for stability;
• helping us detect changes from a previously stable pattern of variation;
• signaling the need for the adjustment of a process;
• helping us detect special causes of variation.

3. A process is said to be in control (with respect to some measured char-
acteristic X of the product) if the distribution of X does not change over
time.

4. There are two types of causes that produce the variation seen in a run
chart:

• common (chance) causes. These are generally small and are due to the
many random elements that make up a process.

• special (assignable) causes. These are more systematic changes in pat-
tern for which the real cause is often found when their presence is sig-
nalled by a control chart.
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5. Control charts for subgroups of data.
• x–chart: plots successive subgroup means to monitor the behavior of

the average level of X (see Fig. 13.2.1).
• R–chart: plots successive subgroup ranges to monitor the behavior of

the variability of X (see Fig. 13.2.3).
• p̂–chart: plots successive subgroup proportions to monitor the be-

havior of the proportion of items produced which are “defective” (see
Fig. 13.2.4).

6. Individuals chart. These are used when data from the process is produced
too slowly for grouping to be feasible (see Fig. 13.4.1).

7. The upper and lower specification limits (USL and LSL) are externally
imposed, for example by the customer, and are not a reflection of the
behavior of the process. Also they apply to individual units, not averages.

8. The four tests we shall use for determining when a process is out of control
are as follows:
( i ) One or more points outside the control limits.
(ii) 9 points in a row above or below the center line.
(iii) 6 points in a row steadily increasing or decreasing.
(iv) 14 points in a row alternating up and down (not necessarily crossing

the center line).

Review Exercises 13

The data sets to follow are real but their sources have not been given for reasons
of confidentiality.
1. In a canning plant, dry powder is packed into cans with a nominal weight

of 2000 gm. Cans are filled at a 4-head filler fed by a hopper, with each
head filling about 25 cans every two minutes. The process is controlled by
a computer program which calculates very crude adjustments to fill-times
based on the filled weight recorded at a check weigher. Adjustments, once
made, are maintained for at least 5 cans, so that a subgroup of 5 cans is a
natural subgroup for studying the process. The automatic adjustment was
justified by the expectation that powder density will often change because
of the settling effects in the bins where it is stored prior to canning. To see
how the process was performing, weights were recorded for 5 successive cans
every two minutes for 60 minutes. These weights, expressed as deviations
from 1984 gm, are given in Table 1.
(a) Why is it legitimate to work with deviations rather than the original

data?26

26Originally the observations were expressed as deviations from the target weight of 2014 gm,
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(b) Calculate the center line and the control limits for an x–chart.

( c ) Construct the x–chart. Are there any points outside the control limits?

(d) Construct an R–chart. What does the chart tell you?

( e ) It turns out that because of the crude adjustment scheme, the between-
subgroup variation is much greater than the within-subgroup varia-
tion. Therefore using the within subgroup variation to determine the
control limits could be regarded as unreasonable. To get round this
problem, treat the 30 subgroup means in the table as 30 single ob-
servations and construct an individuals control chart. How does this
affect your decision about the stability of the process?

Table 1 : Canning PLant Data

Subgroup Weight-1984 gm Mean Range

1 32.3 31.6 13.3 14.3 16.6 21.62 19.0
2 23.2 32.9 30.1 34.8 29.9 30.18 11.6
3 8.1 17.5 11.9 11.4 12.5 12.28 9.4
4 19.6 26.2 27.8 27.4 17.1 23.42 10.7
5 31.4 35.7 29.2 29.7 26.9 30.58 8.8
6 37.5 22.6 8.1 12.9 14.5 19.12 29.4
7 20.0 18.0 23.6 9.0 16.1 17.34 14.6
8 7.9 4.4 4.4 3.9 3.7 4.86 4.2
9 17.8 17.1 18.4 24.9 21.5 21.94 7.8

10 25.4 26.9 27.3 21.6 29.2 27.16 7.6
11 35.9 42.8 41.1 37.4 24.8 36.40 18.0
12 26.6 33.4 27.9 25.1 29.9 28.58 8.3
13 13.7 11.8 20.6 6.2 14.2 13.10 14.4
14 32.3 23.1 17.7 22.1 12.1 21.46 20.2
15 27.4 26.0 29.4 29.5 32.5 28.96 6.5
16 36.5 42.4 30.7 27.0 23.3 31.98 19.1
17 24.0 36.8 31.5 22.5 25.6 28.08 14.3
18 26.2 18.0 14.4 6.8 11.3 15.14 9.4
19 25.7 26.3 23.2 17.8 18.1 22.22 8.5
20 16.4 44.1 33.4 29.7 32.2 33.16 27.7
21 13.2 23.3 23.7 21.0 16.7 19.58 10.5
22 24.5 32.8 24.4 29.2 22.0 26.58 10.8
23 16.7 24.9 27.8 29.3 31.4 26.02 14.7
24 34.2 25.6 11.5 8.5 2.6 16.48 31.6
25 33.6 17.4 17.5 18.4 15.6 20.50 18.0
26 27.2 37.2 27.4 28.2 21.2 28.28 16.0
27 29.6 39.0 35.7 32.5 29.3 33.22 9.7
28 18.9 54.3 40.4 35.3 28.3 35.44 35.4
29 19.1 28.6 23.8 29.9 27.1 25.70 10.8
30 29.9 29.4 30.8 30.3 38.5 31.78 9.1

2. In Example 13.2.2 we saw that the p̂–chart for the number of units reworked
indicated that the production process was “out of control”. A quality im-
provement team worked on the project and the subsequent data for the first
half of 1995 are as given in Table 2.

but this led to too may negative numbers so we added 30 to the deviations to make them all
positive.
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Table 2 : Units Requiring Rework After Changes

Week ending Requiring Total
Day/month rework production %

11/2 27 2405 1.12
18 27 2672 1.01
25 28 3057 0.92
4/3 20 3053 0.66

11 16 3062 0.52
18 5 2489 0.20
25 34 3685 0.92
1/4 25 3305 0.76
8 15 3339 0.45

15 14 2536 0.55
22 17 2701 0.63
29 30 2843 1.06
6/5 32 3809 0.84

13 15 3050 0.49
20 17 3173 0.54
27 14 3205 0.44
3/6 10 2937 0.34

10 9 2559 0.35

(a) Construct a p̂–chart using the average value of n.
(b) Do you think that the team was successful in stabilizing the process?
( c ) What else was achieved by the team in terms of variability?

3. The data in Table 3 were obtained for a process deemed to be in control.
The process produced a low-volume product, but certain numbers of the
items produced resulted in credit notes being written (because of problems
with the product). For this process, these were very expensive so that the
sequence is short.

Table 3 : Credit Note Data

Credit Total Credit Total
Month notes no. Month notes no.

Jan 10 144 Jul 4 64
Feb 4 81 Aug 3 100
Mar 4 100 Sep 6 81
Apr 16 400 Oct 5 169
May 9 225 Nov 24 400
Jun 8 196 Dec 10 100

(a) Determine the values for the proportions defective and calculate the
best value to use for the center line.

(b) Construct a run chart for the proportions defective and draw in the
center line.

( c ) Using the value obtained in (a) for the center line, determine individual
2-sigma upper and lower control limits for each point (i.e. using ni,
not n.

(d) Why have we chosen “2-sigma limits” rather than the more customary
3-sigma limits?
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( e ) What do you conclude from the chart?

4. To monitor the performance of a vehicle, the mileage was recorded each
time fuel was added. After 30 measurements we have the following distances
(Mge.) traveled per unit volume of fuel used. The unsigned differences for
consecutive pairs (|diff.|) are also given in Table 4.

Table 4 : Fuel Consumption Data

No. Mge. |diff.| No. Mge. |diff.| No. Mge. |diff.|
1 11.4 11 11.7 0.9 21 12.5 0.0
2 11.3 0.1 12 11.6 0.1 22 11.3 1.2
3 11.9 0.6 13 11.6 0.0 23 11.4 0.1
4 11.4 0.5 14 13.2 1.6 24 13.1 1.7
5 12.5 1.1 15 12.3 0.9 25 12.0 1.1
6 12.0 0.5 16 12.3 0.0 26 12.9 0.9
7 9.6 2.4 17 11.9 0.4 27 13.5 0.6
8 11.9 2.3 18 11.3 0.6 28 12.6 0.9
9 12.6 0.7 19 11.9 0.6 29 13.1 0.5

10 12.6 0.0 20 12.5 0.6 30 13.1 0.0

(a) What sort of control chart would you use here?

(b) Construct your chart and draw in the center line and the control limits.
What do you conclude?

( c ) It was found that the vehicle was used for a lot of very short trips in
the city during the time when the 7th sample value was calculated.
Exclude this point and recompute your limits. What do you conclude?

Table 5 : Plastic Film Data

Roll Thick1 Thick2 Mean Roll Thick1 Thick2 Mean

1 115 123 119.0 26 116 126 121.0
2 114 124 119.0 27 113 123 118.0
3 115 122 118.5 28 115 124 119.5
4 114 123 118.5 29 112 122 117.0
5 114 125 119.5 30 111 124 117.5
6 115 124 119.5 31 113 123 118.0
7 112 127 119.5 32 113 120 116.5
8 115 126 120.5 33 114 124 119.0
9 113 124 118.5 34 111 125 118.0

10 113 125 119.0 35 115 124 119.5
11 117 126 121.5 36 113 124 118.5
12 115 128 121.5 37 112 124 118.0
13 116 127 121.5 38 114 127 120.5
14 113 121 117.0 39 117 127 122.0
15 112 125 118.5 40 116 126 121.0
16 113 124 118.5 41 117 127 122.0
17 114 125 119.5 42 117 127 122.0
18 113 123 118.0 43 113 125 119.0
19 116 125 120.5 44 113 125 119.0
20 114 127 120.5 45 114 126 120.0
21 112 120 116.0 46 114 129 121.5
22 110 119 114.5 47 115 129 122.0
23 117 125 121.0 48 116 129 122.5
24 116 126 121.0 49 116 130 123.0
25 113 126 119.5



30 Control Charts

5. The data in Table 5 were collected by a factory producing rolls of plastic
film. The 49 pairs of measurements represent the thickness (in microns)
measured at the ends of 49 successive rolls. Each roll represents about 20
minutes of manufacturing and measurements may be taken only at the end
of each roll. The two measurements from each roll are measured at two
fixed positions across the film, one at the edge and one in the middle.

(a) Construct an x–chart using subgroups of size 2. Comment on the
stability of the process. It looks too good to be true doesn’t it! What
do you think is wrong?

(b) Using the means in the above table construct an individuals chart.
Explain why this chart is more reliable than the previous one.

( c ) What does the chart show?

6. A particular product is used as a texture coating. To check on the produc-
tion process 21 samples were taken over a period of 3 months in 1994. A
number of measurements were carried out on each subgroup. Table 6 gives
measurements on one of the variables, TSC (Total Solids Content expressed
as a percentage). Construct an appropriate control chart and comment on
the stability of the process.

Table 6 : Texture Coating Data

Subgroup %TSC Subgroup %TSC Subgroup %TSC

1 49.5 8 49.1 15 49.1
2 50.9 9 49.4 16 50.0
3 49.2 10 49.6 17 50.7
4 49.1 11 49.4 18 49.7
5 49.3 12 49.5 19 50.5
6 49.5 13 51.2 20 50.3
7 50.0 14 49.6 21 50.4

7. A manufacturing company produces an emulsion. Subgroups are tested
every month and the number of subgroups which do not conform to manu-
facturing criteria are given in Table 7 (labeled defect.).

(a) Construct a p̂–chart.

(b) Is the process stable?

8. In problem 6. above, another variable pH was measured at the same time
as TSC. The data are given in Table 8. Construct a control chart and
comment on the process.
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Table 7 : Emulsion Conformance Data

No. Total % No. Total %.
Month defect. subgroups defect. Month defect. subgroups defect.

Jan/92 13 109 11.9 Sep/93 19 123 15.5
Feb 11 108 10.2 Oct 31 126 24.6
Mar 18 135 13.3 Nov 38 142 26.8
Apr 20 112 17.9 Dec 15 90 16.7
May 14 99 14.0 Jan/94 23 106 21.7
Jun 15 97 15.5 Feb 23 115 20.0
Jul 36 108 33.3 Mar 47 136 34.6
Aug 20 100 20.0 Apr 36 98 36.7
Sep 25 121 20.7 May 39 123 31.7
Oct 28 119 23.5 Jun 28 84 33.3
Nov 34 124 27.4 Jul 44 107 41.1
Dec 21 113 18.6 Aug 29 135 21.5
Jan/93 16 104 15.4 Sep 26 108 24.1
Feb 30 102 29.4 Oct 24 112 21.4
Mar 27 131 20.6 Nov 30 113 26.5
Apr 27 122 22.1 Dec 21 102 20.6
May 29 116 25.0 Jan/95 22 93 23.6
Jun 17 96 17.7 Feb 18 132 13.6
Jul 37 118 31.4 Mar 38 130 29.2
Aug 32 122 26.3 Apr 29 113 25.7

Table 8 : pH Data

Subgroup pH Subgroup pH Subgroup pH

1 7.9 8 7.5 15 7.8
2 8.0 9 7.7 16 7.7
3 7.7 10 7.8 17 7.3
4 7.7 11 7.9 18 7.7
5 7.8 12 7.7 19 7.6
6 8.0 13 7.2 20 7.9
7 8.4 14 7.7 21 7.6

*9. Suppose that we are using an x-chart with subgroups of size n = 5 in an
idealized setting in which the data is Normally distributed with known mean
µ and standard deviation σ. We know that σ

X̄
= sd(X) = σ√

n
. Use also the

facts that

pr(µ− 2σ
X̄
≤ X ≤ µ+ 2σ

X̄
) = 0.954

pr(µ− 3σ
X̄
≤ X ≤ µ+ 3σ

X̄
) = 0.997.and

Assume that the process is under control and that subgroups are indepen-
dent. Suppose that 100 subgroup means are plotted onto the chart over the
course of a day.

(a) What is the probability that at least one subgroup mean lies outside
2-sigma control limits? Repeat for 3-sigma control limits.
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(b) What is (i) the distribution, and (ii) the expected value of the number
of subgroup means that will lie outside 2-sigma control limits? Repeat
for 3-sigma control limits.

Suppose now that the process goes out of control in that the mean shifts
from µ to µ+ 0.5σ. (The variability remains unchanged.)

**( c ) Show that the probability that the next subgroup mean lies outside
the 2-sigma control limits is 0.19 [This is the probability that the control chart

signals the change with the first post-change subgroup.]

(d) What is the probability that at least one of the next 5 subgroup means
lies outside the 2-sigma control limits?

( e ) Repeat (c) and (d) but for 3-sigma limits.
( f ) What have you learned from the calculations in this question?


