
Chapter 15

Multiple Linear Regression

by Chris Wild and George Seber1

The University of Auckland

Modern computer packages have made the “doing” of multiple regression, in the sense
of fitting specified models, comparatively trivial. The two aspects that require the de-
velopment of sophistication are in understanding what the program output is telling you
about the data and the process of building models to use for analysis. The latter, in
particular, is more of an art than a science and challenges even experienced professional
statisticians. The most important thing to develop in a first exposure to multiple re-
gression is an understanding of the basic model and of the types of information that
successful regression analyses provide. This is our primary focus. We also discuss model
criticism and illustrate the processes involved in model building.

15.1 Using Several Explanatory Variables

15.1.1 Why Use Several Predictors?

In problem 10 of Review Exercise 12, we used regression to predict the asking prices
of Renault-5 cars from their ages. There are, however, other things besides age that
affect the value of a car and thus the asking price. We should be able to do a better
job of predicting prices if, in addition to age, we can also use information on such things
as distance traveled (mileage), extras fitted, number of previous owners, and general
condition of the body and interior.

1 c©2000 C.J. Wild and G.A.F. Seber.
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2 CHAPTER 15. MULTIPLE LINEAR REGRESSION

In simple regression in Chapter 12, we were using a single explanatory variable X to
explain the behavior of our response variable Y . In doing this, we were really just dipping
our toes in the water. In most real situations we can come up with quite a long list of
variables that are likely to affect the behavior of the response we are interested in. It
seems intuitively compelling that we should be able to make better predictions, or come
to a better understanding of mechanisms, using a whole set of explanatory variables than
we could from any one of them alone. Put more simply, the more we know the better we
should be able to do.

In real investigations where regression is used, the most critical phase of the study is
to come up with a list of characteristics that could plausibly be useful in predicting or
explaining the response of interest. These lists come from combining the knowledge and
intuitions of the investigators with the results of activities such as brainstorming with
people who are knowledgable about the area under study and reading reports on previous
studies. Sometimes it is comparatively obvious how we should measure a characteristic
(e.g., age). Sometimes it is extremely difficult. For example, how can we capture the
notion of “the general condition of the interior of a car” as some sort of measurement?
All of this results in a list of variables that are both plausible explanatory variables for
the response and are things that we will actually be able to measure in practice. The
study then proceeds to gathering data on these variables and the response variable for a
properly chosen set of individuals. There are a number of types of question we often try
to answer using such studies.

• Which of the variables in our list really are important predictors and which seem
to carry little information about the response?

We may want to know, for example, what are the most important risk factors for adult-
onset diabetes? What are the best predictors of company takeover? What factors best
predict the way in which a company will report its performance in its accounts?

• How can we use the data we have collected to build a prediction equation that
combines information from all of our explanatory variables and gives predictions
which are close to the observed responses?

More generally, we need ways of building a good model for the response we are likely to
get at any given combination of values of the explanatory variables.

• How large an effect of does each of our explanatory variables have on the response?
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To what extent does a high-fat diet increase the risk of diabetes? How big a drop in car
price can we expect over 5 years? What is the effect of maternal smoking on the birth
weights of babies once we have adjusted for the effects of other important predictors such
as the sizes of the parents?

QUIZ ON SECTION 15.1.1

1. Why do we want to consider the effects of several explanatory variables rather than just a single
variable?

2. How do we arrive at a list of candidate explanatory variables for inclusion in a study?

3. What types of question are studies that use regression generally trying to answer?

EXERCISES FOR SECTION 15.1.1

1. A data set we sometimes use in class relates the sizes of insurance claims for fire
damage of houses to the distance of the house from the fire station. What other
characteristics of the house do you expect would be predictive of the size of a claim?

2. Another data set we use was collected to evaluate the effects of an advertising
campaign on attendance figures for a zoo. The advertisements were broadcast for
periods of about a week separated by longer rest periods where the ads were not
broadcast. Was the advertising effective? You might think that question would
be easy to answer; we just look at attendances shortly after the ads have been
run and see if they are larger than usual. Unfortunately, it is not this easy. Zoo
attendances go up and down all of the time. There are, however, patterns in this
variation. What other factors can you think of that might influence attendance at
the zoo? (In looking for an advertising effect, we have to find ways to allow, or
adjust, for these other variables.)

3. Think about how you would measure some of the characteristics that you have
listed in questions 1. and 2.

15.1.2 Displaying the data

In practice, good investigations start with a question and a great deal of up-front work
goes into such things as coming up with sets of useful explanatory variables, solving
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measurement problems, and devising good experimental, sampling or other observational
designs. For the rest of the Chapter, we will assume this job and the ensuing data
collection has been done well. If it hasn’t we are already in trouble. With data analysis,
it really is a case of garbage in, garbage out. So from now on we are in the business of
trying to make sense of the data that we have collected.

Example 15.1.1 Can We Predict the Quality of Bordeaux Wine Vintages?

The quality of Bordeaux wine vintages vary from year to year. Some years such as
1982, 1983 and 1985 produced outstanding vintages, while others like 1984 produced
wine of lesser quality. The data in Table 15.2.1 were collected over a period of 27 years.
The price is an index obtained by taking the wholesale price fetched by mature wines,
adjusting it for inflation, and scaling it so that the value for 1961 is 100. We shall use
this index as a measure of the quality of the wine. Interest centers on how climatic
conditions affect the quality of the resulting wine. If possible, we would like to be able
use climate information for a vintage to predict its quality before the wines go on to
the market. Three climatic variables are given, namely, TEMP (average temperature in
◦C over the growing season), H.RAIN (rainfall over harvest time in mm), and W.RAIN
(winter rainfall in mm).

TABLE 15.1.1 Bordeaux Wine Data

year price temp h.rain w.rain year price temp h.rain w.rain
1952 37 17.1 160 600 1968 11 16.2 292 610
1953 63 16.7 80 690 1969 12 16.5 244 575
1955 45 17.1 130 502 1970 40 16.7 89 622
1957 22 16.1 110 420 1971 27 16.8 112 551
1958 18 16.4 187 582 1972 10 15.0 158 536
1959 66 17.5 187 485 1973 16 17.1 123 376
1960 14 16.4 290 763 1974 11 16.3 184 574
1961 100 17.3 38 830 1975 30 16.9 171 572
1962 33 16.3 52 697 1976 25 17.6 247 418
1963 17 15.7 155 608 1977 11 15.6 87 821
1964 31 17.3 96 402 1978 27 15.8 51 763
1965 11 15.4 267 602 1979 21 16.2 122 717
1966 47 16.5 86 819 1980 14 16.0 74 578
1967 19 16.2 118 714
Source: Ashenfelter, O., Ashmore, D., and Lalonde, R. (1995)
“Bordeaux wine vintage quality and weather”.Chance, 8 (4),xxx–xx.
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How can we display this data to see what is going on? The most obvious approach is to
look at a whole lot of scatter plots. Statistical packages give us a very convenient way
of doing this. The result is most often called a scatter plot matrix (as in Minitab), but
Splus and R call it a pairs plot. Figure 15.1 is a scatter plot matrix for the Bordeaux
wine data. It simply consists of a page of scatter plots with every variable plotted against
every other variable. To read the plots we need to understand how the axes are labeled.
We should mentally drag the names in the central boxes horizontally or vertically onto
the axes of the individual plots. For example, every plot in the second column of plots
has PRICE as its x-axis. Every plot in the first row of plots has YEAR as its y-axis.

If we are interested in how well the other variables predict PRICE, we will want
PRICE on the vertical axis and so will be looking at the second row of plots. All of
the relationships with PRICE seem fairly weak, but PRICE appears to decrease over
time (i.e., as YEAR increases), increase with with greater average temperatures over the
growing season (TEMP), decrease as we get more harvest rain (H.RAIN) and perhaps
increase slightly with more winter rain (W.RAIN). (Any relationships between the climate
variables themselves are even weaker.) We note also that the 1961 vintage, which has
PRICE=100, stands out as a possible outlier in many of the plots.

Unfortunately, although sets of scatter plots like these can give us useful ideas about
what might be going on in the data, we cannot put too much trust in what we see in
them for reasons that will soon become apparent.

Example 15.1.2 Individual scatter plots can be misleading

Consider the artificial data given in Table 15.1.2.

Table 15.1.2 Artificial data with two X-variables

Obs. : 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X1 : 1.0 0.4 0.7 0.5 1.0 0.8 0.6 0.4 0.3 0.5 0.6 0.7 0.5 0.2
X2 : 0.1 0.7 0.4 0.9 0.3 0 0.9 0.3 0.6 0.3 0.4 0.8 1.0 0.6
Y : 1.9 1.9 1.9 1.6 1.7 2.2 1.5 2.3 2.1 2.2 2.0 1.5 1.5 2.2

Figure 15.1.2(a) plots Y versus X1 and Fig. 15.1.2(b) plots Y versus X2. From these
graphs it appears that X1 is unrelated to Y and X2 is only weakly related to Y but X1,
X2 and Y happen to be related exactly! In fact, for every observation,

Y = 3−X1 −X2

exactly. If you don’t believe it check and see! The individual scatter plots give us no
inkling that such a strong relationship exists. ¥
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FIGURE 15.1.1 Scatter plot matrix for the Bordeaux wine data.
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FIGURE 15.1.3 3-dimensional scatter plot for the Peru Indians data.

In the example above we saw a situation where the scatter plots failed to show that
an important relationship exists. In addition, an individual scatter plot can show a
relationship with an X-variable when none exists, and it can even get the direction
of a relationship (positive or negative) wrong. You should be particularly suspicious
of scatter plots of Y versus individual X-variables when the scatter plot matrix shows
strong relationships between some of the X-variables. These same problems carry over
to fitted regression models. The regression coefficient from a simple regression of Y on a
single X-variable can be spuriously significant, spuriously insignificant, and even get its
sign wrong.

Since considering the explanatory variables one at a time can be misleading, what
we need are ways of displaying data, or fitting models, that consider all of the variables
together. One option, when we have two X-variables, is a 3-dimensional scatter plot as
in Fig. 15.1.3.

Example 15.1.3 Long Term Effect of Altitude on Blood Pressure

Anthropologists have been interested in determining what are the long-term effects,
if any, of altitude on human blood pressure. One suggested way of doing was to sample
a population of Peruvian Indians who were native to the high Andes mountains but had
since migrated to lower climes. The subjects were males over 21 years old who were
born at high altitudes and had parents also born at high altitudes. Previous research
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suggested that migration of this kind might cause higher blood pressure at first, but over
time the blood pressure would decrease. The variables measured were as follows.

• AGE, the subject’s age.

• YEARS, the number of years since migration.

• WEIGHT, the subject’s weight in kilograms.

• HEIGHT, the subject’s height in mm.

• BP, the subject’s systolic blood pressure.

The data for 39 men are given in Table 15.3.1.

TABLE 15.3.1 Peruvian Indian Data
age years weight height BP age years weight height BP
21 1 71 1629 170 38 18 59.5 1513 114
22 6 56.5 1569 120 38 11 61 1653 136
24 5 56 1561 125 38 11 57 1566 126
24 1 61 1619 148 39 21 57.5 1580 124
25 1 65 1566 140 39 24 74 1647 128
27 19 62 1639 106 39 14 72 1620 134
28 5 53 1494 120 41 25 62.5 1637 112
28 25 53 1568 108 41 32 68 1528 128
31 6 65 1540 124 41 5 63.4 1647 134
32 13 57 1530 134 42 12 68 1605 128
33 13 66.5 1622 116 43 25 69 1625 140
33 10 59.1 1486 114 43 26 73 1615 138
34 15 64 1578 130 43 10 64 1640 118
35 18 69.5 1645 118 44 19 65 1610 110
35 2 64 1648 138 44 18 71 1572 142
36 12 56.5 1521 134 45 10 60.2 1534 134
36 15 57 1547 120 47 1 55 1536 116
37 16 55 1505 120 50 43 70 1630 132
37 17 57 1473 114 54 40 87 1542 152
38 10 58 1538 124
Source: Ryan, T. A., Jr., Joiner, B. L. and Ryan, B.F. (1976).
Minitab: Student Handbook Duxbury Press: North Scituate, Mass.
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Figure 15.1.3 gives a perspective drawing of a 3-dimensional scatter plot. Blood
pressure (BP) is plotted vertically above a horizontal plane whose edges are the YEARS
axis and WEIGHT axis. We can get some idea of the relationship between BP and
YEARS and WEIGHT from the plot. For example, the blood pressures seem larger at
the back of the picture (large weights) than at the front, and there may be an increase
from left to right (as YEARS gets smaller). But then again we may be being mislead
by perspective effects in the picture and the single very large value at the back right.
The ideal would be a 3-dimensional physical construction that we could walk around
and view from different angles. Many statistical packages allow us to mimic this on a
2-dimensional screen by letting us rotate 3-dimensional scatter plots in arbitrary ways,
a procedure which is usually called spinning. The movement involved in spinning gives
us the feeling of depth and relative position. But we are still limited to three dimensions
(i.e., Y plus two explanatory variables), and three dimensional plots still have the same
sorts of inadequacies when there are many more variables to be considered as the two-
dimensional scatter plots do.

There are other promising graphical tools, like coplots, but these will not be considered
in this chapter. Instead we will go on to look at fitting models as a means of understanding
multivariable regression data.

QUIZ ON SECTION 15.1.2

1. What is a scatter plot matrix?

2. Can we trust what we see in a Y versus Xj plot when there are several important explanatory
variables for Y ? Justify your answer.

3. Can we trust the results of a regression of Y on Xj when there are several important explanatory
variables for Y ?

4. What device do computer programs use to give the effect, on a 2-dimensional screen, of walking
around a 3-dimensional scatter plot and looking at it from different angles.

5. Can we trust what we see in a 3-dimensional Y versus X1 and X2 plot when there are several
more explanatory variables which are very predictive of Y ?

EXERCISE FOR SECTION 15.1.2

Obtain a scatter plot matrix (pairs plot) for the Peruvian Indians data and discuss
what you see in the individual scatter plots.
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15.2 The multiple linear regression model

15.2.1 Introducing the model

The simplest possible model for use with a single explanatory variable X is the simple
linear model discussed in Section 12.4. Here, the ith observation has its Y -value related
to its X-value through

Yi = β0 + β1xi + Ui,

where Ui is a random error with underlying true mean µU = 0 and standard deviation
σU = σ. When making formal statistical inferences from data, we further assumed that
the errors were independent and Normally distributed. As we saw in Section 12.4, this
model generates patterns of constant scatter about a linear trend. This very simple model
fits many data sets very well, but other data sets force us to reach for more complicated
models that allow for a greater variety of trend shapes. In Example 12.4.4, we saw how
including a quadratic, or x2 term, in our model to form

Yi = β0 + β1xi + β2x
2
i + Ui,

lets us allow for a gently curved trend. Furthermore, the quadratic model enables us to
test whether the trend really is curved by testingH0 : β2 = 0, as we did in Example 12.4.4.

Now that we have more than one explanatory variable, we have to expand our no-
tation somewhat. Let X1, X2, . . . , Xk denote our explanatory variables (AGE, YEARS,
WEIGHT and HEIGHT in Example 15.1.3). Let xij be the observed value of Xj for the
ith individual. For example, in Example 15.1.3, the second X-variable is YEARS and
the 3rd person has x3 2 = 5.

When we have two explanatory variables, X1 and X2, the simplest model we can
construct is of the form

Yi = β0 + β1xi1 + β2xi2 + Ui.

This model generates a pattern in which the Y -values are randomly scattered about a
plane in three dimensional space as depicted in Fig. 15.2.1. Think of the X1 and X2

axes as being laid out on a table top. The Y -axis is vertical, perpendicular to the table
top. We have tried, in Fig.15.2.1, to portray the regression plane as a sheet of glass. The
black balls are elevated above the glass and the little stick joining each ball vertically
to the plane shows how far the observation is elevated above the plane. The lengths of
these sticks are the sizes of the errors. We also see through the glass plane to balls which
fall below the plane and appear as grey. They too have vertical sticks giving the sizes
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FIGURE 15.2.1 Data points in 3 dimensions scattered about a plane.

of their errors. A model of the sort shown in Fig. 15.2.1 is obviously a very reasonable
candidate model for the data we see in Fig. 15.1.3. The above two X-variable model also
extends in a very natural way to an arbitrary number of variables, k, as

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + Ui,

although we can no longer represent the model diagrammatically in 3-dimensional space.

Extensions

The trend patterns in our data may be considerably more complicated than the plane
depicted in Fig. 15.2.1. With a single X-variable, adding squared and even higher-level
polynomial terms allows us to cater for increasingly complicated trend shapes. Similarly,
with two or more X-variables, adding squared terms in one or more of the variables (e.g.
YEAR2) and cross product terms (e.g. YEAR×WEIGHT) allows us to fit surfaces to our
data which respectively bend and twist. These can all be catered for within the multiple
linear regression model. We can set X1 = AGE, X2 = AGE2, X3 = WEIGHT, X4 =
AGE ×WEIGHT, X5 = YEAR, and so on. Interpretation of the coefficients of variables
which have polynomial and/or crossproduct terms in a model is, however, beyond the
scope of this chapter.
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Regression Analysis

The regression equation is
BP = 90.2 - 0.161 age - 0.538 years + 1.50 weight - 0.0276 height

Predictor        Coef     SE Coef          T        P
Constant        90.18       52.48       1.72    0.095
age           -0.1613      0.2795      -0.58    0.568
years         -0.5380      0.2195      -2.45    0.020
weight         1.4987      0.3173       4.72    0.000
height       -0.02761     0.03674      -0.75    0.457

[Note: Prior to release 13, Minitab labeled the standard error column “StDev”.]

FIGURE 15.2.2 Minitab regression output for the Peruvian Indian data.

15.2.2 Model Fitting

Any set of values we choose for the coefficients β0, β1, β2, . . . , βk, will produce a predicted
value for the Y -variable for the ith individual, namely

ŷi = β0 + β1xi1 + β2xi2 + . . .+ βkxik,

which can be compared with the value that we actually observe, namely yi. We want to
choose coefficient values that give predictions which are close, on average, to observed
data. As in Section 12.3.1 we choose the set of coefficient values which gives the smallest
value of the sum of squared prediction errors,

∑
(yi − ŷi)2. In other words we are again

fitting our model to the data using least squares. The coefficients that define the least
squares surface are denoted β̂0, β̂1, β̂2, . . . , β̂k and are called the least squares estimates.
The (least squares) fitted regression surface, which we will use in an attempt to describe
the trend in the data, is given by

ŷ = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂kxk.

Example 15.2.1 A Least Squares Fit to the Peruvian Indian Data

Figure 15.2.2 gives the results of fitting a multiple regression model to the Peruvian
Indian data from Example 15.1.3 using BP as the response variable and AGE, YEARS,
WEIGHT and HEIGHT as explanatory variables. We see, for example, that the least
squares estimate of the intercept is β̂0 = 90.18, the least squares estimate of the coefficient
of AGE is β̂AGE = −0.1613, and so on. The resulting equation for predicting blood
pressures is

B̂P = 90.18−0.1613×AGE−0.5380×YEARS+1.4987×WEIGHT−0.0276×HEIGHT.
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The first individual in the file (i = 1) has AGE=21, YEARS=1, WEIGHT=71, and
HEIGHT=1629 giving a predicted (or fitted) value for the blood pressure of 147.7 (our
ŷ1) in comparison with the observed blood pressure for this individual of 170 (our y1).
The residual, or estimated error is û1 = y1 − ŷ1 = 170 − 147.7 ≈ 22. In spatial terms
(cf. Fig.15.2.1), this observation falls 22 units above the fitted least squares regression
surface.

As the chapter proceeds, we will learn to answer questions such as:

• Does our model actually fit the data?

• What can we infer about the population or process that gave rise to this data?

• Which variables really do affect Y ?

Our first task is to better understand the model itself.

15.2.3 Interpreting Coefficients

We use these models in situations where the data appears to be randomly scattered
about the fitted regression surface. We are thus thinking in terms of a Y -value on the
regression surface at X1 = x1, . . . , Xk = xk being the average of the Y -values we would
expect to see if we were able take repeated observations at this set of X’s. For exam-
ple, the first Peruvian Indian in Table 15.1.3 has AGE=21, YEARS=1, WEIGHT=71,
HEIGHT=1629 and ŷ = B̂P ≈ 148 for this set of X-values. What this means to us is
that if we collected data on a much larger sample from this population of Indians and
obtained quite a few Indians with AGE=21, YEARS=1, WEIGHT=71, HEIGHT=1629,
then we estimate that the average of those Indians’ blood pressures would about 148.

The least squares coefficients β̂j give us estimates of how the average value of Y
changes as the values of the X-variables change. We think of the least squares estimate
of the coefficient of Xj, β̂j, being an estimate of some unknown true coefficient βj. But
because the least squares coefficients, and resulting ŷ values, are just estimates from data,
they are therefore subject to sampling variation (just as in Section 12.4.1). Therefore, in
due course, we will have to reach once more for our trusty tools of confidence intervals
and significance tests to cope with the uncertainty this sampling variation causes. In
the meantime, however, we want to concentrate on learning to interpret the coefficients,
without the added complication of considering sampling variation.

Our model is that the response for an individual with X1 = x1, X2 = x2, . . . Xk = xk
is

Y = β0 + β1x1 + β2x2 + . . .+ βkxk + U,
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where E(U) = 0. We have:

1st individual : E(Y ) = β0 + β1x1 + β2x2 + . . .+ βjxj + . . .+ βkxk.

Consider now another individual whose X-values are identical to those of the first except
that Xj has increased by w units to Xj = xj + w.

2nd individual : E(Y ) = β0 + β1x1 + β2x2 + . . .+ βj(xj + w) + . . .+ βkxk.

Subtracting the first expression from the second, we see that the difference between the
two values of E(Y ) is βjw. In particular, for a 1-unit increase in Xj (w = 1), E(Y )
changes by βj. When X1 = 0, . . . , Xk = 0, we find that E(Y ) = β0.

Interpreting the Coefficients

β0, the constant, or intercept term,

is the expected Y -value when every Xj = 0.

Provided the values of all X-variables except Xj remain unchanged,

• βj, the coefficient of Xj is the change in E(Y )
associated with each 1-unit increase in Xj.

• If Xj increases by w-units, then E(Y ) changes by βjw units.

[Changing the value of one variable with all the rest remaining unchanged does not always make sense.]

Example 15.2.1 cont. Interpreting the Coefficients

The estimated coefficients are given in Fig. 15.2.2. The estimated intercept is 90.2.
But what does an intercept relate to here? It relates to the average BP value when
all of the X-variables are set to zero, i.e., and an Indian with AGE = 0, YEARS = 0,
WEIGHT = 0 and HEIGHT = 0. This is not a meaningful combination of values so we
shall ignore the intercept.

The other coefficients can be interpreted as the effects of a 1-unit change in the X-
variable under consideration, all other variables being held constant. Thus, to interpret
the coefficient of AGE (-0.16), we think in terms of Indians who are identical on all

variables except their age and estimate that average blood pressure will go down (β̂AGE is

negative) by 0.16 units for every additional year of age. Similarly, since β̂Y EARS = −0.53,
the model estimates that, with all other factors remaining unchanged, blood pressure
goes down by 0.53 units, on average, for every additional year since migration down from
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the mountains. Similarly it estimates that, with all other variables remaining constant,
average blood pressure goes up by 1.48 units for every additional kilogram in weight and
down by 0.028 units for every additional mm of height. For every additional 1 cm =
10×1 mm in height, average blood pressure is estimated to go down by 0.028×10 = 0.28
units (= β̂HEIGHT × 10).

15.2.4 Using centered and standardized variables

By centering a variable, say AGE, we mean that we construct a new variable AGE.C,
say, defined by

AGE.C = AGE − mean(AGE).

If you replace AGE by AGE.C in our model, you will find that only the intercept changes.
(Try it and see!) All other coefficients (and their standard errors P-values, etc.) remain
unchanged. When we replace all variables in the model in Fig. 15.2.2 by their cen-
tered equivalents, we find that the coefficients of AGE.C, YEARS.C, WEIGHT.C and
HEIGHT.C are identical to those for their uncentered equivalents in Fig. 15.2.2, but
that the intercept has changed to 127.4. Not only has the intercept changed, it is now
a meaningful quantity. When we set our new X-variables to zero, i.e., set AGE.C=0,
YEARS.C=0, WEIGHT.C=0 and HEIGHT.C=0, we are equivalently setting the original
variables equal to their average values. The intercept now relates to average BP at the
average value of AGE, the average value of YEARS, and so on.

If we center all of our X-variables before putting them into the
model, the intercept relates to the average value of Y when each
of the original X-variables is set equal to its average value.

Example 15.2.2 A Least Squares Fit to the Bordeaux Wine Data

Figure 15.2.3 gives the results of fitting a multiple regression model to the Bordeaux
wine data from Example 15.1.1 using PRICE as the response variable and TEMP (average
temperature in ◦C over the growing season), H.RAIN (rainfall over harvest time in mm),
and W.RAIN (winter rainfall in mm) as the explanatory variables. Here, again, the
intercept is not meaningful. It relates to average PRICE in a year when all the X-
variables are set to zero, i.e., TEMP=0, H.RAIN=0 and W.RAIN=0, and we never see
such years. Interpreting the coefficients, with all other variables being held constant,
the model estimates that average PRICE goes up by 22 units for every additional ◦C in
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lm(formula = price ~ temp + h.rain + w.rain)

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -365.45179   77.63849  -4.707 9.66e-05 ***
temp          22.50086    4.28502   5.251 2.51e-05 ***
h.rain        -0.09296    0.03746  -2.481   0.0208 *
w.rain         0.06103    0.02247   2.717   0.0123 *

FIGURE 15.2.3 Some regression output from R for the Bordeaux wine data.

400 500 600 700 800

w.rain

FIGURE 15.2.4 Dot plot of W.RAIN.

average growing temperature, goes down by 0.09 units for every additional 1 mm in rain
over harvest time, and goes up by 0.06 units for every additional 1 mm of rain over the
winter.

It looks, on the face of it, as though the rain variables are having almost no effect
on PRICE at all because their coefficients are so small. But the coefficient of W.RAIN
is telling us about the effect of a 1-unit increase in W.RAIN which means only 1 mm
more rain over a whole winter. It’s not surprising the effect is small! Figure 15.2.4 plots
W.RAIN and we see a range of more than 400 mm in winter rain values.

We could decide that 100 mm is a more useful increase in W.RAIN to be looking at
than 1 mm. Our coefficient tell us that for every additional 100 mm winter rain, average
PRICE is estimated to go up by β̂W.RAIN × 100 = 6 units. ¥

From the baove discussion we see that we cannot judge the size of the effect of a
variable from the size of its regression coefficient in isolation. The size of β̂j depends on
the units that Xj is measured in. If you convert the units of W.RAIN from mm to cm,
so that the numerical values are divided by 10, then the coefficient becomes 10 times
larger. If you convert to lots of 100 mm, the coefficient becomes 100 times larger. When
interpreting the effect of a variable, we want to be quantifying the effect of a change of a
sensible size. We could do this by looking at the extent of the variation in that variable,
as we did with W.RAIN in Example 15.2.2. Next we will look at a more automated
approach.
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The effect of a standardized X-variable

By the expression standardizing a variable, say W.RAIN, we mean that we construct
a new variable W.RAIN.S, say, defined by

W.RAIN.S =
W.RAIN − mean(W.RAIN)

sd(W.RAIN).

The new variable W.RAIN.S has mean 0 and standard deviation 1. A 1-unit increase
in W.RAIN.S corresponds to a 1 standard-deviation increase in W.RAIN. Thus, if we
use W.RAIN.S in the model, the coefficient of W.RAIN.S tells us about the change in
Y associated with every 1-sd increase in W.RAIN. Also we will always get the same
coefficient regardless of the units we use to measure W.RAIN.
[Note that because standardized variables have mean zero, they are also centered.]

Effect of a standardized variable

The coefficient of a standardized X-variable is the change in average Y -value as-
sociated with a one standard deviation (1-sd) increase in the original X-variable.

Fig. 15.2.3(a) gives the regression output for the Bordeaux wine data with all explanatory
variables having been standardized. The coefficients are now much more comparable in
size. The fitted model estimates that a 1-sd increase in TEMP increases PRICE, on
average, by about 15 units, whereas a 1-sd increase in H.RAIN decreases average PRICE
by about 8 units, and a 1-sd increase in W.RAIN increases average PRICE by about
7 units. The effect of a 1-sd increase in temperature seems about twice as large as the
effects of comparable increases in the rainfall variables; these latter two effects being very
similar in size (but opposite in direction).

Notes:
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            Estimate  Std.Error t-value  p-value
(Intercept)  127.410      1.669  76.337  < 2e-16
age.S         -1.240      2.148  -0.577   0.5676
years.S       -5.431      2.216  -2.451   0.0195
weight.S      10.639      2.252   4.724 3.91e-05
height.S      -1.455      1.936  -0.752   0.4575

(a) Bordeau wine data:  Using standardised explanatory
variables to model PRICE

Coefficients:
            Estimate  Std.Error t-value p-value

(Intercept)   28.815      2.565  11.233 8.17e-11
temp.S        14.673      2.794   5.251 2.51e-05
h.rain.S      -6.792      2.737  -2.481   0.0208
w.rain.S       7.875      2.899   2.717   0.0123

(b) Peru Indians data:  Using standardised explanatory
variables to model BP

FIGURE 15.2.3 Regression output with standardized X-variables
(and unstandardized Y ).

1. Standardizing X-variables puts different variables measured on different scales on
to the same footing and thus makes their effects much more comparable.

2. Standardizing is a good idea during data exploration but, when reporting results
to nonstatistical people, we recommend reporting the effects of changes in terms of
the original variables as these are easier to understand.

3. If all of the X-variables are standardized, as they are in Fig. 15.2.3, then the
magnitudes (ignoring signs) of the regression coefficients are in the same rank order
(largest to smallest) as the t-values, and in the reverse order to the P-values.

4. If all of the X-variables are standardized, the intercept is the average Y -value when
all X’s are set equal to their average values.

Standardized variables and partial correlation

If we standardize both Y and Xj, then the resulting coefficient can then be interpreted
as estimating the partial correlation between Y and Xj after adjusting for the effects of
the other variables. We can loosely think of this in terms of the correlation between
Y -values and Xj-values for individuals who are identical on all other variables.
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              Estimate Std. Error  t-value  p-value
(Intercept)     0.0000     0.1224 4.12e-14   1.0000
temp.S          0.7002     0.1333    5.251   2.51e-05
h.rain.S       -0.3241     0.1306   -2.481   0.0208
w.rain.S        0.3758     0.1383    2.717   0.0123

FIGURE 15.2.4 Fitting the regression model to the Bordeaux wine data with
Y = PRICE and the three X-variables all standardized.

We refitted the model we have been using for the Bordeaux wine data after stan-
dardizing all of the variables, including PRICE. The results are given in Fig. 15.2.4. We
get the following estimated partial correlations: 0.70 between PRICE and TEMP; -0.32
between PRICE and H.RAIN; and 0.38 between PRICE and W.RAIN.

QUIZ ON SECTION 15.2

1. To what quantity does the intercept (or constant term) in a multiple linear regression relate?

2. What quantity does the coefficient of Xj tell us about?

3. What is meant by “centering a variable”?

4. What quantity does the intercept relate to if all of the fitted X-variables are centered?

5. What is meant by “standardizing a variable”?

6. If XjS is the standardized version of Xj and we regress Y on a set of X-variables including XjS ,
what quantity does the coefficient of XjS tell us about?

7. What quantity does the intercept relate to if all of the fitted X-variables are standardized?

8. Let XjS be the standardized version of Xj and YS be the standardized version of Y . If we regress
YS on a set of X-variables which includes XjS rather than Xj , what quantity does the coefficient
of XjS tell us about?

EXERCISES FOR SECTION 15.2

1. This exercise is built around the Bordeaux wine data and assumes that the model
fits the data adequately.

(a) Fit a linear model to the Bordeaux wine data with response variable PRICE
and explanatory variables TEMP, H.RAIN and W.RAIN and check that you
obtain the results in Fig. 15.2.3 (expect small computer-package-specific dif-
ferences in labeling).
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(b) Replace TEMP in your regression by the centered version of TEMP. What
about the output changes? What stays the same?

(c) Replace all of the explanatory variables in your regression in (a) by their
centered versions. Compare this output with that from both (a) and (b).
What about the output changes? What stays the same? Also compare the
intercept with the mean value of PRICE. What do you notice?

(d) Replace TEMP in your regression in (a) by the standardized version of TEMP.
What about the output changes? What stays the same?

(e) Replace all of the explanatory variables in your regression in (a) by their
standardized versions. Compare this output with that from both (a) and (d).
What about the output changes? What stays the same? Also compare the
intercept with the intercept in (c) and the mean value of PRICE. What do
you notice?

(f) Replace both PRICE and TEMP in your regression in (a) by their standardized
versions but leave all other variables unchanged. What about the output
changes? What stays the same? Compare also with the output in Fig. 15.2.4.

2. This exercise is built around the Peruvian Indians data and assumes that the model
fits the data adequately.

(a) You may be interested in whether the effects you have seen in problem 1. are
special to this data set. They are not, but you may wish check and to see
using this second data set.

(b) Obtain an estimate of the effect on average blood pressure of a 500 g (or 0.5 kg)
increase in weight (all other variables being held constant).

(c) Give an estimate of the effect on average blood pressure of a 1 standard-
deviation increase in weight (all other variables being held constant).

(d) Give an estimate of the partial correlation between blood pressure and weight
(all other variables being held constant).

3. Read about the Fuel Usage data in Appendix A15.1.

(a) Fit a linear regression model to these data with LITERS as the response
variable and DIST and MO.JAN as the explanatory variables, and interpret
the coefficients.
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(b) Estimate the change in liters consumed, on average, associated with an 100-
kilometers increase in the number of kilometers traveled since the last fill-up.

(c) Find the partial correlation between LITERS and DIST and try to explain
what it means.

(d) Repeat (a) for a model in which KM.LTR is the response and DIST and
MO.JAN are the explanatory variables.

15.3 Inference

15.3.1 Inferences About Coefficients

There is a great deal of the basic regression output that we have not yet discussed. We
refer to the standard error, t-statistic and P-value columns. What are all these things
there to tell us about? Here, we are just revisiting Section 12.4. The only thing that is
really new is that our output panel has more lines. Here is a quick recap.

Our least squares estimates of the coefficients are not the truth; they are just estimates
from data. We know that, as such, they are subject to sampling variation, and this makes
us unsure about what the true values really are. The standard error for the estimated
coefficient of Xj is an estimate of its variability in repeated sampling. We also want
to employ our usual tools of confidence intervals for the unknown true values of the
coefficients and significance tests for values we hypothesize for these unknown true values.

Under the standard multiple linear-regression model used by the programs,

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + Ui, where Ui ∼ Normal(µUi = 0, σUi = σ),

for i = 1, . . . , n independently. Equivalently, given all of the values xi j the individuals
have for their X-variables,

Yi ∼ Normal(µYi , σYi = σ), where µYi = β0 + β1xi1 + β2xi2 + . . .+ βkxik,

for i = 1, . . . , n independently. When these assumptions are true, it can be shown that

the sampling distribution of the t-statistics t0 =
β̂j − βj
se(β̂j)

is Student(df = n− k− 1). The

resulting confidence intervals for the unknown true value of βj are of the form

estimate ± t std errors = β̂j ± t se(β̂j)
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and the t-test statistic for testing a hypothesized value for the unknown true βj, i.e. test-
ing H0 : βj = c is

t0 =
estimate− hypothesized value

std error
=

β̂j − c
se(β̂j)

.

The “no effect” hypothesis

One of the big questions we said we needed to be able to answer was, “Which of our
X variables really do affect Y ?” The t-statistic and the P-value on the line of standard
output corresponding to variable Xj relate to a test of H0 : βj = 0, and thus t0 =
estimate/standard error. The printed P-value is typically a 2-sided P-value.

When βj = 0, the model for Y no longer depends in any way on Xj. Thus, when
our linear model fits, testing for βj = 0 is equivalent to testing a hypothesis that says
Xj has no effect on Y over and above that already captured by the other variables. Or
equivalently, we could interpret it as Xj has no predictive value for Y over and above
that already captured by the other variables. The reason why we have stressed this idea
of “over and above that already captured in the other variables” is that if we take out
one of the other X-variables out of the model or put a new one in, the relationships
between these other variables and Xj can cause the whole picture to change. Xj may
then become, or may then cease to be, a significant predictor of Y . There are other
ways that people use to express this “over and above” idea. We may talk, for instance,
of Xj having no effect on Y once we have adjusted for, or allowed for, or controlled for
the effects of the other variables in the model, or partialled out the effects of the other
variables in the model.

When the P-value corresponding to Xj is small (significant), we do indeed have evi-
dence that Xj is related to Y and we can see the direction of the relationship by looking

at the the sign of β̂j. If the P-value is large (nonsignificant), it is plausible that there is no

real relationship because the distance between the estimate β̂j and zero can be explained
simply in terms of sampling variation.2 If the P-value is large, we will use the expression,
“we have no evidence of a relationship. . .”.3

Example 15.3.1 Interpreting the Test Results for the Peruvian Indian Data

2If you received a dollar from every writer of a research report that mistakenly claimed that their
nonsignificant P-value demonstrated that no relationship existed, you would soon become quite rich.

3Of course the “we have no evidence ...” is referring just to the data set we are currently looking at.
There may well be evidence in other data sets.
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Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 90.1774 52.4751 1.7185 0.0948 -16.4647 196.8195
age -0.1613 0.2795 -0.5772 0.5676 -0.7293 0.4066
years -0.5380 0.2195 -2.4511 0.0195 -0.9841 -0.0919
weight 1.4987 0.3173 4.7238 0.0000 0.8539 2.1434
height -0.0276 0.0367 -0.7516 0.4575 -0.1023 0.0470

FIGURE 15.3.1 Excel regression output for the Peruvian Indian data.

Figure 15.3.1 gives Excel output for the multiple regression model for BP in the Peru-
vian Indian data using AGE, YEARS, WEIGHT and HEIGHT as explanatory variables.

The AGE and HEIGHT effects are nonsignificant. Having adjusted for the effects of
the other variables in the model, there is no evidence of an AGE effect or a HEIGHT
effect on blood pressure. There is very strong evidence of a weight effect (P-value is less
than 10−4 and the effect is positive (BP goes up with WEIGHT). There is also evidence
of a YEARS effect (P-value ≈ 0.02). The direction of the effect is negative, i.e., average
BP goes down as the number of YEARS the person has been down from the mountains
increases.4

To estimate the sizes of these effects, taking sampling variation into account, we need
confidence intervals for the true values of the coefficients. From Fig. 15.3.1, we see that
a 95% confidence interval for the true value of βWEIGHT is given by approximately [0.85,
2.14]. The coefficient tells tells about the change in average value of Y = BP associated
with a 1-unit increase in WEIGHT (all other variables remaining fixed). We see that
with 95% confidence, when WEIGHT goes up by 1 kg, average blood pressure goes up
by somewhere between 0.85 and 2.14 units.

What is new here? Previously, when we interpreted the estimated coefficient, we
quoted a point estimate for the effect of WEIGHT on BP without giving any idea of
uncertainty. Now we are quoting a range of values to allow for the uncertainty due to
sampling variation. All of our statements to follow are made with 95% confidence, and
all concern the effect of a change in the stated variable when all other variables are held
fixed. We will not keep repeating these qualifications.

The confidence interval for βY EARS is given approximately by [−0.98, −0.09]. Thus,
with 95% confidence, average blood pressure goes down by somewhere between 0.09 and

4Since this was the effect the investigators were expecting to find (see the introductory paragraph of
Example 15.1.3), we would be justified in quoting a 1-sided P-value of 0.02/2 = 0.01.
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0.98 units for every additional year since migrating down from the mountains. For every
additional 10-year period5, average BP goes down by somewhere between 0.9 and 9.8
units. The confidence intervals also show that whilst we have no evidence of an AGE or
HEIGHT effect, we cannot claim that they have no effect. The confidence interval for
βAGE, for example, tells us that a 1-year increase in AGE is associated with anywhere
between an 0.73 unit decrease and an 0.41 unit increase in average BP. For 10 years,
this ranges between a 7.3 unit decrease and a 4.1 unit increase. We are simply rather
ignorant about any effect that AGE might have.

Excel’s output, given in Fig. 15.3.1, is unusual in that it supplies these intervals
automatically. Most packages make you work a little to get them.

Confidence Intervals
Our confidence interval for the true value of a coefficient is of the form

estimate ± t std errors.

For linear model with k X-variables and an intercept, df = n− k − 1.

[Note that when we have a single X-variable, k = 1 and df = n− 2 as in Section 12.4.2.]

Our data set contains data on n = 39 men, and we have fitted k = 4 variables so the
degrees of freedom are df = 39− 4− 1 = 34. When df = 34, the t-multiplier for a 95%
confidence interval is given by t = 2.032. Thus the 95% confidence interval for βAGE is
given by −0.1613± 2.032× 0.2795. This gives the interval for the AGE coefficient given
in Fig. 15.3.1 to within rounding error. You may wish to check that you can get the
other values.

15.3.2 The Test for No Regression

Figure 15.3.2(a) shows a little more of the standard regression output produced by
Minitab. Most packages produce something very like this. The equivalent portion of
the output from R and Splus, given in Fig. 15.3.2(b), is a little more abbreviated. In the
Minitab output we get an “analysis of variance” panel that looks only a little different
from what we saw in 1-way analysis of variance. Something is obviously being tested.
What is it?

5The values of YEARS in Table 15.1.3 vary between 1 and 43 years.
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S = 10.42       R-Sq = 43.4%     R-Sq(adj) = 36.8%

Analysis of Variance

Source            DF          SS         MS         F        P
Regression         4      2837.5      709.4      6.53    0.001
Residual Error    34      3693.9      108.6
Total             38      6531.4

Residual standard error: 10.42 on 34 degrees of freedom
Multiple R-Squared: 0.4344, Adjusted R-squared: 0.3679
F-statistic: 6.529 on 4 and 34 degrees of freedom, p-value: 0.0005

(a)   More of the Minitab regression output
σ

σ

df  (used in CIs etc) P-value of “test for no regression”

F-test statistic

F-test statistic

(b)   Equivalent piece of the Splus and R regression output

R2

R2

FIGURE 15.3.2 Regression output containing the test for no regression.

The test results relate to a null hypothesis that says that the true values of all of the
regression coefficients except the intercept are zero:

No regression: H0 : β1 = β2 = . . . = βk = 0.

What this means is that none of the X-variables have any predictive value for Y . The
test result is almost always significant (as it is in Fig. 15.3.2) as it is extremely rare
for an investigator’s intuition to be so bad as to come up with a completely dud set of
predictors. The test is more often called the test for regression. We show evidence for the
existence of some regression by being able to reject the null hypothesis of no regression.

Several other aspects of the output have been labeled in Fig. 15.3.2, in particular, see
σ̂ which is the estimate of the standard deviation of the errors,6 and df (= n− k− 1) for
use in confidence interval construction. Another quantity that has been labeled is R2,
which is the subject of the next subsection.

QUIZ ON SECTION 15.3

1. Why do we need to test hypotheses and calculate confidence intervals for regression coefficients?

2. What do the standard errors of the coefficients tell us about?

6Note that σ̂ is the square root of the MS, or mean square, entry for “Residual Error” (e.g. in
Fig. 15.3.2(a),

√
108.6 = 10.42).



26 CHAPTER 15. MULTIPLE LINEAR REGRESSION

3. In what two forms can the standard multiple linear regression model be written?

4. What is the formula for the t-test statistic printed on the regression output?

5. What hypothesis does it test? Mathematically? Verbally or intuitively?

6. If you took one of the other X-variables out of the model and refitted, would you expect the
P-value for the coefficient of Xj to be different or remain the same?

7. If you added another X-variable to the model and refitted, would you expect the P-value for the
coefficient of Xj to be different or remain the same?

8. How do we interpret a significant P-value here?

9. How do we interpret a nonsignificant P-value?

10. Write down the formula used for the degrees of freedom to be used for t-tests and intervals, and
define the terms in that formula.

The following questions concern Section 15.3.2

11. What hypothesis is tested by what is commonly known as the “test for regression”? Try to give
both a technical answer and an intuitive verbal answer.

12. What test statistic is used?

13. How could we interpret (i) a significant “test for regression” result? (ii) a non-significant result?

EXERCISES FOR SECTION 15.3

1. Apply the ideas learned in Section 15.3.1 to the output from the model we have
been using for the Bordeaux wine data. (Assume that this model fits the data.)

(a) What do we learn from the P-values and the signs of the coefficients?

(b) Obtain and interpret confidence intervals for the coefficients. For the rain
variables, interpret both in terms of a 1 mm change and a 100 mm change.

2. Read about the Fuel Usage data in Appendix A15.1.

(a) Fit a linear regression model to these data with LITERS as the response
variable and DIST and MO.JAN as the explanatory variables. What do we
learn from the P-values and the signs of the coefficients?

(b) Obtain and interpret confidence intervals for the coefficients. For the variable
DIST, interpret both in terms of a 1 km change and a 100 km change.

(c) Repeat (a) and (b) for a model in which KM.LTR is the response and DIST
and MO.JAN are the explanatory variables.
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3. Read about the Coursework Data in Appendix A15.2.

(a) Fit a linear regression model to these data with EXAM as the response variable
and TEST1, TEST2 and ASSIGN as the explanatory variables.

(b) What do we learn from the P-values and the signs of the coefficients?

(c) Now refit with EXAM as the response variable and only ASSIGN as explana-
tory? What do we learn from the P-values and the signs of the coefficients?

(d) Can you give any plausible explanation for the difference in the conclusions
reached between (b) and (c)? (Read carefully about the nature of the assign-
ment marks).

15.4 Does Our Model Fit the Data?

Unfortunately, the phrase “the fit of a model” is often used in two quite different senses.
One sense concerns the predictive or explanatory ability of the model (“Are the predicted
values very close to the observed y-values?”). The other sense concerns whether the
assumptions of the multiple linear regression model are satisfied.

It is possible for a model to give good point predictions7 but clearly violate model
assumptions. A linear fit to the computer timings data in Fig. 12.4.9 (where the trend
is slightly curved) gives quite good point predictions within the range of the data. At
0.935 the correlation coefficient is very high. A linear model fitted to the rain gauge data
in Fig. 12.4.8 gives even better point predictions. This time the trend is linear but there
is a strong departure from the constant spread assumption (see Fig. 12.4.2(d)). What
goes wrong in these situations is that statistical tests, confidence intervals and prediction
intervals cease to have the statistical behavior we expect of them. For example, calculated
“95% confidence intervals” no longer have 95% coverage properties.

It is also possible – in fact, quite common – for a model to have low predictive ability
and yet satisfy all of the model assumptions. In other words, the assumptions about the
form of the trend and the statistical behavior of the errors (as seen through the residuals)
are satisfied, but because σ is large, there is a great deal of scatter. Consequently, the
trend does not predict individual data points very well.

Section 15.4.1 discusses R2, a measure of the predictive power of a model. Sec-
tion 15.4.2 discusses the checking of model assumptions.

7By point predictions we are distinguishing between single number predictions and prediction intervals
(Section 12.4.3).
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15.4.1 Measuring Predictive or Explanatory Power

As discussed in Section 12.5.2, when we have a single X-variable, the correlation coeffi-
cient r of the data points (xi, yi) is a measure of how closely the set of data points came
to falling on a straight line. When r is +1 or −1, the points fall exactly on the line
without any scatter (Fig. 12.5.2). Thus, y-values can be predicted without error from
their x-values and the equation of the line. When r = 0 there is no linear relationship
and a line will not provide useful predictions of y-values from x-values. It can be shown
mathematically that r is also the correlation coefficient of the pairs (ŷi, yi). This alter-
native description is very useful as it automatically generalizes to models where there is
more than one explanatory variable.

Suppose now that we have a linear model with k explanatory variables. We define R
to be the correlation coefficient of the pairs (ŷi, yi). As already indicated, R = r when
k = 1. Unless we are using a pathologically ill-fitting model, R will be positive. Now
R2, generally known as the coefficient of determination, routinely appears on regression
output (see both Figs 15.3.2(a) and (b)). When multiplied by 100% it tells us about the
percentage of the variation in the observed y-values that can explained, via the model,
by the variation in the values of the X-variables.

Explanatory Power of the Model

• R is the correlation between the observed and predicted y-values.

The coefficient of Determination, R2

• is the proportion of the variation in the y-values that has been
explained by the fitted model;

• is usually re-expressed in terms of “percent variation explained”.

For the model fitted to the Peruvian Indians data in Fig. 15.3.2, R2 = 0.434 (or 43.4%).
This tells us that about 44% of the variation in blood-pressure values can be explained,
using the fitted model, in terms of the variation present in the AGE, YEARS, WEIGHT
and HEIGHT measurements. The balance of the variation, namely 56% remains, as yet,
unexplained.

If we are dealing with an ill-fitting model, we may be able to increase the percent
variation in BP explained by AGE, YEARS, WEIGHT and HEIGHT a little by building
a model that fits better (see Section 15.4.3 for ideas on model building). Otherwise,
we conclude that the variables we have are not capable of telling the whole story. The
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only way to do better job of explaining the behavior of Y = BP will be to find some
new (additional) X-variables, or combinations of the original variables, that are good
predictors.

Models cannot provide very precise predictions unless R2 is close to 100% (at least
above 90%). Otherwise there is too much unexplained variation (scatter) left in the data,
and our prediction intervals have to become quite wide to accommodate it.

The coefficient of Determination

For the remainder of this subsection, we shall delve more deeply into the background
and interpretation of R2. The material is rather technical and can be omitted on a first
reading.

The theoretical table corresponding to Fig. 15.3.2 is given by

TABLE 15.1.1 Analysis-of-Variance Table for Regression

Mean F
Source SS df SS -statistic P -value

Regression
∑

(ŷi − y)2 3 s2
reg f0 =

s2reg
s2

pr(F ≥ f0)
Residual

∑
(yi − ŷi)2 n− k s2

Total
∑

(yi − y)2 n− 1

Here, yi− y is the (signed) distance between yi and the center of the y’s. We can rewrite
yi − y (by adding and subtracting ŷi) as

yi − y = (ŷi − y) + (yi − ŷi)
or deviation of = deviation of + residual .

observation trend value

It can be shown algebraically that this additive property goes through for the sums of
squares as well. Thus,∑

(yi − y)2 =
∑

(ŷi − y)2 +
∑

(yi − ŷi)2

or Total.SS = Regression.SS + Residual.SS,

where SS is an abbreviation for Sum of Squares . Now,

• Total.SS is a measure of the variation in the yi’s.
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FIGURE 15.4.1 Variation in the y-values and in the ŷ-values.

• Regression.SS is the corresponding measure of the variation in the predicted values.8

• Residual.SS is the corresponding measure of the variation in the residuals.

The residual sum of squares represents the unexplained component of the variation. We
try to fit models that capture all of the trend. Having done that, we think of what
is left over (the scatter) as random noise. We can find no patterns in it. We cannot
“explain” it. The regression sum of squares represents the component of the variation
that is “explained by the model” in the sense depicted in Fig 15.4.1 (with a single X-
variable). Regression.SS =

∑
(ŷi − y)2 is the variation in the ŷ ’s. It is the amount of

variation we would still have even if the model fitted perfectly, i.e., even if there was
no residual scatter. It results from the variation in the X-variable(s). It can be shown
mathematically that

R2 =
Regression.SS

Total.SS
.

Thus R2 is the proportion of the total variation in the observed y’s that has been “ex-
plained by the model” – it is the proportion of variation explained.

8It transpires that y is also the mean of the ŷis and that the residuals have mean 0.
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We know that R is the correlation between the observed and predicted y-values. This
tells us that 0 ≤ R2 ≤ 1, if R2 is close to 0 then there is little correlation between
the observed and predicted values, and if R2 is close to 1 they are highly correlated.
Furthermore,

R2 =
Regression.SS

Total.SS
=

Total.SS− Residual.SS

Total.SS
= 1− Residual.SS

Total.SS
.

Thus, an R2 of close to 1 corresponds to a set of residuals, or estimated errors, that are
very small relative to the variation in the y-values. This indicates that the model will be
good for prediction. An R2 close to 0 corresponds to a set of residuals that are almost
as variable as the y-values. In other words, the scatter about the fitted surface is almost
as large as the original variation in y-values. When R2 is close to 0 we are essentially
doing no better than predicting every one of the yi’s using their sample mean y. The
X-variables are not giving useful predictive information.

Adjusted R-squared

Right next to R2 on the output panels in Fig. 15.3.2, you will find R-sq (adj) in
(a) or Adjusted R-squared in (b). The value is a little smaller than R2. Why the
adjustment? It can be shown mathematically that, when you add another X-variable
to a model, R2 will become smaller. This happens even if the additional variable has
essentially no predictive value. The adjustment allows for the number of variables fitted
in the model, and it enables us to make fair comparisons of the predictive abilities of
models with differing numbers of X-variables.

EXERCISE showing that r is also the correlation coefficient between y and ŷ. (***PUT
IN AN EXERCISE from Chance Encounters?***)

15.4.2 Model Checking

We will now consider evaluating whether our model fits the data in the sense that the
assumptions appear to be satisfied. The main tools for doing this, namely residual plots,
have already been described and used in Section 12.4.4, and we suggest that you now
take the time to re-read Section 12.4.4.

The standard multiple linear regression model is given by,

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + Ui, where Ui ∼ Normal(µUi = 0, σUi = σ),
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for i = 1, . . . , n independently. All of the discussion in Section 12.4.4 concerning the
implicit assumptions about the error behavior and the way we use the residuals ûi = yi−ŷi
to check the assumptions about the straight line model also apply to the multiple linear
regression model exactly as before. The only real change from Section 12.4.4 is that our
residuals have been captured from a model with a more complex trend and that we now
have more than one X-variable to plot our residuals against.

The basic principle behind model building and residual plotting for these and also
for more complicated models is as follows. We try to build a model which captures and
models all of the trends, or patterns, in our data. The residuals represent what is left
over. If we have successfully modeled all patterns, the residuals should look random
and contain no patterns. If we find pronounced patterns in our residuals, this means
that there are patterns in the data that our modeling has not as-yet captured. We will
therefore need to enlarge or change our model to capture these unmodeled patterns.

The standard residual plots we look at are

• Residuals versus fitted (or predicted) values (û versus ŷ)

• Residuals versus each of the X-variables in turn

Any appreciable trends seen in these plots tell us that our trend model is not working.
A curve in a plot of residuals versus Xj suggests we try adding an X2

j term. We can
try to address problems in the residuals versus fitted values plot that do not respond to
this by checking whether other available X-variables should have been included in the
model, adding cross-product terms (e.g., X2 × X4), or by using transformations of Y
and/or the X-variables (see Chapter 16). Fans in the residuals are addressed by using
a transformation of Y (Chapter 16) or by weighted least squares (which is outside the
scope of the present account).

If the data has been collected in time order, we also plot

• Residuals versus time (or observation number if time is not available)

• Residuals versus lagged (or previous) residuals to look for serial correlation
[i.e., plot the points (û1, û2), (û2, û3), . . ., (ûn−1, ûn)]

The standard test for serial correlation is called the Durbin-Watson test.

It is only when we have fixed all of the other problems in the model that we investigate
Normality of the residuals with:

• Normal probability plots (also known as Normal Q-Q plots) of the residuals
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FIGURE 15.4.2 Two residual plots for the Bordeaux wine data.

and formal tests such as the Wilk-Shapiro W-test and the Weisberg-Bingham test.

Example 15.4.1 Model Checking for the Peruvians Indian Data

We performed residual plots to check the model fitted to the Peruvian Indians data
in which BP is the response variable and AGE, YEARS, WEIGHT and HEIGHT were
explanatory variables. [This model produced the output in Figs 15.3.1 and 15.3.2(a).] We
found no serious problems with any of the residual plots. They all looked sufficiently like
“horizontal patternless bands.” We thought we were perhaps seeing a slight hint of a fan
in the RESIDUALS versus HEIGHT plot, but repeatedly plotting normally distributed
random numbers against HEIGHT convinced us that this could easily have just been
random. Figure 15.4.2 gives the residuals versus fitted or predicted) values plot and
the Normal Q-Q plot. The latter looks sufficiently linear and formal tests, using both
the W-test and the Weisberg-Bingham test, detected no evidence against the Normality
assumption.

*** SLIGHT PROBLEM JUST NOTICED, A BIG AGE*YEARS INTERACTION***

Example 15.4.2 Model Checking for the Bordeaux Wine Data

We have performed residual plots to check the model fitted to the Bordeaux data in
which PRICE is the response variable and TEMP, H.RAIN and W.RAIN were explana-
tory variables. [This model produced the output in Fig. 15.2.3.] Figure 15.4.3(a) shows
the residuals versus fitted values plot. We see a curved trend which is very pronounced,
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FIGURE 15.4.3 Two more residual plots for the Bordeaux wine data.

and also a fan. These have been emphasized in Fig. 15.4.3(b). The model is clearly
deficient. We would put no trust in any inferences drawn from this model. We will build
a model that does fit this data as an extended Case Study in Section 15.4.3.

15.4.3 A CASE STUDY: Building a model for the wine data

This subsection illustrates the process of model building. Parts of the Case Study will
involve greater levels of sophistication than could reasonably be expected from a beginner
in multiple regression. We begin where Example 15.4.2 left off.

When we tried plotting residuals versus the other X-variables, we saw a suggestion
of a curve in the RESIDUALS versus TEMP and nothing suspicious in the RESIDUALS
versus H.RAIN and RESIDUALS versus W.RAIN plots. The curve in the TEMP plot
was too slight to account for the pronounced curve in Fig. 15.4.3. Nevertheless, we tried
adding a TEMP2 term to the model and refitting. The residuals versus fitted values plot
was virtually unchanged from Fig. 15.4.3.

There is one more variable, YEAR, that we have not used. You may recall that we
saw a trend in the PRICE versus YEAR scatter plot in Fig. 15.1.1. We then plotted the
residuals from the original fit versus YEAR (see Fig. 15.4.4(a)). There is a clear trend
downwards. This suggests that we should add YEAR to the model. Once YEAR had
been added to the model, the trend in the residuals versus YEAR plot (not shown) has
been removed, but the residuals versus fitted values plot (shown in Fig. 15.4.4(b)) still
shows a strong curved trend and the fan is now even more pronounced than it was in
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FIGURE 15.4.4 Adding YEAR to the regression model.

Fig. 15.4.3(b). We have included the only other variable we have, and we have tried to
allow for curved trends by adding squared terms. None of it helped appreciably. Adding
cross-product terms (e.g., TEMP*W.RAIN) doesn’t help either. Where do we go from
here?

Experience has shown us that when we have a fan in the residuals versus fitted values
plot with larger fitted values corresponding to greater scatter, and particularly when it
is combined with a curved trend like that in Fig. 15.4.4(b), we usually do much better
building a model for9 log(Y ) than we do building a model for Y itself. Thus we decided
to try using log(PRICE) as our response variable, and TEMP, H.RAIN, W.RAIN and
YEAR as explanatory variables. Our model is now

log(PRICE) = β0+βTEMPTEMP+βH.RAINH.RAIN+βW.RAINW.RAIN+βYEARYEAR+U,

where U is our random error term.

The residuals versus fitted values plot from the log(PRICE) model (Fig. 15.4.5(a))
is enormously better than any we have seen for this data before. We are still not quite
happy with it, however. Discounting the two points in the top left hand corner, we see
an upward drift. (We could well be getting overly picky here.) There is a slight curve
in the residuals versus YEAR plot, so we tried adding YEAR2. The resulting residuals

9In our account, as in most packages “log” is used to refer to natural logarithms (loge) which often
correspond to the ln button on a calculator.
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FIGURE 15.4.5 Modeling log(PRICE).

versus fitted values plot in Fig. 15.4.5(b) looks better and the plots of residuals versus
each of the X-variables in the model (not shown) look good. The P-value for the squared
term is less than 5% so we will leave it in for the time being.

We are fairly happy with the residual analysis of this model so far. This is, however,
data collected over time so we have some more things things to check out. YEAR is
our time variable and we have already checked the residual plot for YEAR. But we
have yet to check for serial correlation (i.e. time-order correlation between the residuals).
Fig. 15.4.6(a) shows the plot of residuals versus lagged residuals. There is a hint of a
downward drift, but the standard formal test for serial correlation, namely the Durbin-
Watson test, gives a non-significant result.10 Now that everything else has checked out,
we check for Normality of the errors. The Normal Q-Q plot of the residuals, given in
Fig. 15.4.6(b), is very close to linear. We have finally built a model for which all of the
assumptions appear to be satisfied.

The process we have gone through above is the statistical modeling cycle depicted in
Fig. 15.4.7. As we knew no theory to guide our original choice of model, we used the
simple model containing the variables of interest as a starting point and progressively
added features, each time reacting to the inadequacies we saw in the current model in

10If we had found significant serial correlation, we would then have set about enlarging our model to
incorporate a description of the dependence pattern in the errors using a time series model for the errors.
We would have begun by trying the simplest such model, the autoregressive model of order 1, or AR(1).
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FIGURE 15.4.6 Two residual plots for the “final” Bordeaux wine data model.

the residual plots. We have eventually come up with a model that fits well. Now it is
time to use it to make inferences about the data.

Basic computer output from the model is given in Fig. 15.4.8(a). There are complica-
tions in interpreting the coefficients of this model as the coefficients tell us about changes
in log(PRICE). We are more interested in what happens to PRICE. In Chapter 16, which
discusses the use of transformations in data analysis, we will learn how to interpret the
coefficients of a linear model for log(Y ) in terms of multiplicative (rather than additive)
effects, and we will revisit this analysis. In the meantime, we note that if log(Y ) in-
creases (resp. decreases) with an X-variable, then so does Y . For example, when all
other variables held fixed, we have strong evidence that log(PRICE), and hence PRICE,
goes down with increasing rainfall at harvest time and goes up with increasing rainfall in
the winter. Also wines grown under the same climatic conditions are getting cheaper (in
inflation-adjusted currency) over time, and we have some evidence that the relationship
with temperature is curved. If you plot the −7.175 TEMP + 0.2381 TEMP2 over the
range of the data, you will find that the estimated temperature effect is increasing with
TEMP.

The analysis above used data on Bordeaux vintages from 1952 to 1980. Figure 15.4.8(b)
gives the climate-variable values for the next twelve years, i.e., from 1981 to 1992. Fig-
ure 15.4.8(c) gives the results of using the model in (a) to predict log(PRICES) for these
new vintages. The highest point predictions are 4.99 for 1989 and 5.18 for 1990, so
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Regression Analysis

The regression equation is
log.price = 106 - 7.17 temp + 0.238 temp.sq - 0.00381 h.rain
            + 0.00153 w.rain - 0.0253 year

Predictor        Coef     SE Coef          T        P
Constant       105.95       32.03       3.31    0.003
temp           -7.175       3.486      -2.06    0.052
temp.sq        0.2381      0.1065       2.24    0.036
h.rain     -0.0038060   0.0007285      -5.22    0.000
w.rain      0.0015263   0.0004602       3.32    0.003
year        -0.025264    0.006447      -3.92    0.001

S = 0.2580      R-Sq = 86.3%     R-Sq(adj) = 83.1%

     Fit  StDev Fit         95.0% CI             95.0% PI
  3.1399     0.1248   (  2.8804,  3.3994)  (  2.5439,  3.7359)
  3.5972     0.1884   (  3.2054,  3.9889)  (  2.9328,  4.2615)
  3.9386     0.2255   (  3.4695,  4.4076)  (  3.2259,  4.6512) X
  2.7182     0.1324   (  2.4429,  2.9935)  (  2.1151,  3.3212)
  3.4610     0.1604   (  3.1275,  3.7945)  (  2.8292,  4.0928)
  2.3000     0.1453   (  1.9978,  2.6021)  (  1.6842,  2.9158)
  2.8464     0.1664   (  2.5003,  3.1925)  (  2.2079,  3.4849)
  3.6721     0.2011   (  3.2539,  4.0903)  (  2.9919,  4.3524)
  4.9908     0.5236   (  3.9018,  6.0798)  (  3.7768,  6.2048) XX
  5.1820     0.5746   (  3.9870,  6.3770)  (  3.8720,  6.4919) XX
  3.4280     0.2551   (  2.8974,  3.9585)  (  2.6734,  4.1825) X
  3.0167     0.3376   (  2.3146,  3.7189)  (  2.1331,  3.9004) XX

  X  denotes a row with X values away from the center
  XX denotes a row with very extreme X values

temp.p temp.p.sq h.rain.p w.rain.p year.p
17.0 289.00 111 535 1981
17.4 302.76 162 712 1982
17.4 302.76 119 845 1983
16.5 272.25 119 591 1984
16.8 282.24  38 744 1985
16.3 265.69 171 563 1986
17.0 289.00 115 452 1987
17.1 292.41  59 808 1988
18.6 345.96  82 443 1989
18.7 349.69  80 468 1990
17.7 313.29 183 570 1991
17.9 320.41 342 543 1992

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

Minitab output from the prediction
year.p

(a)  Basic Minitab output

(b)  Input data for the prediction

(c)  Results of prediction

our
annotation

FIGURE 15.4.8 Using our “final” model.
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these look like the most promising wines. If we want to allow for uncertainty, it is the
“95.0% PI” prediction intervals we should be looking at since we are interested in actual
log(PRICE) values, not averages (see Section 12.4.3 for discussion of the two types of in-
terval). We notice that the prediction intervals are very wide even though, withR2 ≈ 86%
our fitted model explained approximately 86% of the variation in log(PRICE). We only
get precise prediction intervals when R2 is very large indeed. Of course we are really not
interested in predicting log(PRICE) at all. What we would really like to predict is the
PRICE. Fortunately, this is easy. We turn a prediction for log(PRICE) into a prediction
for PRICE by exponentiating. For example, our point prediction for PRICE in 1981 is
23.1, since exp(3.1399) = 23.1. We treat the interval endpoints in the same way. Our
prediction interval for the PRICE of the 1981 vintage extends from exp(2.5439) = 12.7
to exp(3.7359) = 41.9.

After thought

When this data was introduced in Example 15.1.1, PRICE was intended to be a
measure of the quality of the wine. It was, in fact, the inflation adjusted average price
fetched for the vintage. But we have seen that, having adjusted for the effects of the
climate variables, the average PRICE has been going down over time. Does this mean
that the quality has been going down? Not at all. Consider what has been happening with
computers. The inflation-adjusted prices of comparable pieces of computing equipment
have dropped rapidly over time so that the computers we buy now are much cheaper than
machines with inferior capabilities were in the past. Inflation adjustment is an overall
average adjustment for a whole“basket of goods” which ignores the fact that different
types of goods and services become more or less expensive at different rates. Increasing
competition from premium wines from regions such as California and Australiasia could
have been a factor. It is quite likely that premium wines have been becoming cheaper
in relative terms. Only wine experts could hope to begin to answer the question as to
whether Bordeaux vintages have been deteriorating. What we believe is that inflation
adjusted PRICE is perhaps deficient as a measure for comparing the qualities of wines
over time. Something like log(PRICE) −0.025×YEAR might be a better measure for
the period 1952 to 1980.

15.4.4 Other Model Diagnostics

Over recent years, the development of suitable diagnostics for various statistical models
has become somewhat of an industry, and rightly so as it is an important topic. In
fact whole books have been written on just regression diagnostics. We have focused, in
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this chapter, on the residual plots as a diagnostic tool, which will be adequate for many
regression models. However, there are two other aspects that we want to mention briefly
just so that you will be familiar with the terms if you come across them. These are
influence and multicollinearity .

Influence

An influential point is a data point which has a profound effect on the fitting of the
model, that is, if we shift the point slightly there can be a substantial change in the values
of the regression coefficients for the fitted model. The model is sensitive to the position
of the point. This concept of influence was introduced briefly for a straight line model
in Section 12.4.4 under the heading of “Outliers in X”, and you should consult that
paragraph and look at Fig. 12.4.13. There the data point (in 2-dimensions) has a large
X-value, and the point may be in keeping with the trend determined by the remaining
data points or it may act as an outlier in that it is well away from the trend. Thus
an influential point comes in two flavors; it may blend nicely with the rest of the data
and confirm the apparent trend already there, or it may clash with the apparent trend
and suggest a very different picture. Methods of detecting and dealing with such points
lie outside the scope of this book. However, some regression packages automatically
highlight so-called high-leverage points. These points are essentially outliers in the X-
space and have the potential to be influential. We typically reanalyse our data with those
points omitted and see how much our conclusions would change. If the conclusions do
change considerably we have to think very carefully about the scope and purpose of our
analysis and what we should now believe.

Multicollinearity

To introduce the notion of “multicollinearity” suppose we measure two variables X1

and X2 for a regression model with n data points. Unbeknown to us X2 = 2X1 +3. If we
fit both X1 and X2 as explanatory variables we run into two problems, computational
and interpretational. Firstly, the model can’t be fitted as the computer can’t handle
this so-called ill-conditioning . Secondly, it is clear that once one of the variables is in
the model, the other variable is redundant and provides no new information about the
response Y . Clearly we must choose either X1 or X2, but not both; and it does not
matter which one we choose. Because of the exact linear relationship 2X1 −X2 + 2 = 0,
the n pairs of values for X1 and X2 lie on a straight line (i.e., are “collinear”), and the
correlation coefficient for the pairs will have a correlation coefficient of r = 1. In practice,
however, the linear relationship may only be approximate so that the correlation is not
1 but something close to 1 such as r=0.95. Both variables can now be fitted, but we
still have the problem of not needing both in the model. With just two regressors we
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can plot X1 versus X2 and thus see what is going on. However, with a larger number
of explanatory variables we need other methods for detecting the presence of a linear
relationship like X1 + 3X2 + 2X3 ≈ 4 or even several such relationships. Because the
X variables satisfy (or, more usually, approximately satisfy) a linear relationship, we
say that the variables are (approximately) collinear, and we refer to the problem as the
problem of “multicollinearity”. Fitting and interpreting models with multicollinearity is
tricky, and the reader is referred to more advanced texts for details.

QUIZ ON SECTION 15.4

(Intro. paragraphs of Section 15.4)

1. In what two very distinct senses do people talk about “the fit of a model”?

2. Why could a model fit well in one of these senses and fail to fit in the other?
(Section 15.4.1)

3. What measure do we use of the explanatory, or predictive power of a model?

4. When we have a single X-variable, the correlation coefficient r measures the correlation between
X and Y . What other correlation does it measure?

5. What is R the correlation between?

6. What name is commonly given to R2?

7. How, intuitively, do we interpret R2?

8. When will a model give us reasonably precise predictions?

9. If our model assumptions are satisfied, but R2 is still small, what does this tell us? What avenues
remain for improving the situation?

(Sections 12.4.4 and 15.4.2)

10. What assumptions about the errors are made by the linear model?

11. Which assumptions are critical for all types of inference?

12. What types of inference are relatively robust against departures from the Normality assumption?

13. Four types of residual plot were described. What were they and what can we learn from each?

14. What is an “outlier in X” and why do we have to be on the lookout for such observations?

15. What is the basic principle behind residual plotting in the context of model building?

16. What “fix” is suggested by a curved trend in a residuals versus Xj plot.

17. What are some other possible remedies for curved trends in a residuals versus fitted values plot?

18. How can a fan in a residuals versus fitted values plot be addressed?

19. What is “serial correlation” and when do we look for it?
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20. What residual plot can be used to diagnose serial correlation?

21. What is the usual test used to test for serial correlation?

22. Is non-Normality of residuals the first or last problem we should worry about?

(Section 15.4.3)

23. What is serial correlation and when do we check for it?

24. How do we check for it graphically? What is the name of the usual test for serial correlation in
regression models?

25. Describe the statistical modeling cycle.

26. What three considerations feed into our choice of a first model to fit to the data?

27. What is one useful source of ideas about how we might change a model that does not fit?

28. How can we convert a prediction for log(Y ) to a prediction for Y ?

29. How can we convert a prediction interval for log(Y ) to a prediction interval for Y ?

(Section 15.4.4)

30. What is an influential point?

31. What should we do if our computer package identifies a point as being a high-leverage point?

32. What is multicollinearity and why is it a problem?

EXERCISES FOR SECTION 15.4

1. xxx

2. xxx

3. xxx

*****EXERCISES

There is one Indian who is very overweight for his height. Is he the influential
point? You may have found him in your pairs plot
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15.5 Using Grouping Factors as Explanatory Vari-

ables

15.5.1 Including a Binary Variable

A binary variable is one that can only take 2 values. It is used to code for membership
of one of 2 possible groups, for example male/female, employed/unemployed, alive/dead,
or bankrupt/not bankrupt. Whereas once numeric codes were always used, it is now
common to use the group names themselves.

We will look at a special, and very useful, way of coding whether an individual does or
does not belong to a group of interest.

Use of dummy, or indicator variables

Suppose that we code XF =

{
1, if the person is female;
0, otherwise.

Thus, males have XF = 0 and females have XF = 1. Now suppose that we blindly
include this variable in a multiple regression model. Under a linear model, an individual
with X1 = x1, . . . , . . . , Xk = xk and XF = xF has

E(Y ) = β0 + β1x1 + . . .+ βkxk + βFxF

What does the coefficient of XF represent? A female has

Female : E(Y ) = β0 + β1x1 + . . .+ βkxk + βF × 1

An otherwise identical male has

Male : E(Y ) = β0 + β1x1 + . . .+ βkxk + βF × 0.

The difference is βF . Thus, the coefficient of XF is the difference in average Y -value
between females and otherwise identical males (identical in the sense of having the same
values for the other X-variables).

The indicator or dummy variable for having characteristic A is of the form

CHAR.A =

{
1, if the individual has characteristic A;
0, if the individual does not have characteristic A.

The coefficient of CHAR.A is the difference in average Y -value between individuals
with A and individuals without A who are the same on all other X-variables.
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Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  4.60350    0.81609   5.641 2.29e-08 ***
test1        0.85168    0.08400  10.139  < 2e-16 ***
test2        1.48335    0.08452  17.549  < 2e-16 ***
assign       0.02590    0.04061   0.638   0.5238
is.female   -0.59948    0.30127  -1.990   0.0469 *
---
Signif. codes:  0  `***'  0.001  `**'  0.01  `*'  0.05  `.'  0.1  ` '  1

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 23.920635   0.290716  82.282   <2e-16 ***
is.female    0.007272   0.413756   0.018    0.986

           95 % C.I.lower    95 % C.I.upper
(Intercept)       23.35005          24.49122
is.female         -0.80481           0.81935

(a)  Response = EXAM, Explanatory = TEST1, TEST2, ASSIGN and IS.FEMALE

(b)  Response = EXAM, Explanatory = IS.FEMALE   (alone)

FIGURE 15.5.1 Using IS.FEMALE as an explanatory variable.

Alternatively, we can think of the coefficient for CHAR.A as giving the difference in
average Y -values between those with and without characteristic A, once we have adjusted
for (or allowed for, or controlled for, or partialled out) the effects of the other variables
in the model. Of course, we can only apply these interpretations to data if the model
fits!

Example 15.5.1 Looking For a Sex Difference in Exam Marks

Figure 15.5.1(a) gives the results of fitting a linear model to predict EXAM marks
of the 1995 Auckland class from TEST1 marks, TEST2 marks ASSIGN (assignment)
marks and IS.FEMALE, where IS.FEMALE is an indicator variable for being female.
The P-value for IS.FEMALE coefficient is just less than 5% and we calculate the 95%
confidence interval for the true value to be given by (-1.19, -0.01). We do seem to have
some evidence that females are not doing as well as males, scoring somewhere between 0
and 1.2 marks less on average, than a male with the same test and assignment scores.

If we do not adjust for coursework marks as in Fig. 15.5.1 (b), which uses IS.FEMALE
as the only explanatory variable, there is no significant gender difference.

Notes:
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1. One plausible (to us!) explanation for the change in significance is as follows. It could be that
women are working harder on average than men. (If you check, you will find that females do have
significantly higher assignment scores than males.) If we are comparing two people who have
achieved the same scores, it is plausible that the person who has worked less hard for those scores
has a greater natural talent in the subject and this may tend to show in the exam. Well, that’s
one idea – can you think of some other possible explanations?

2. It is generally true when we fit a regression using a indicator (or dummy) variable as the sole
explanatory variable, the P-value and confidence interval for the effect of that variable is identical
to the P-value and confidence interval we get from a pooled 2-sample t-test for a difference in
mean Y -values between the two groups.
In this case, you can verify that the P-value and confidence interval from a pooled 2-sample t-test
for a difference in average exam scores between females and males is the same as the P-value and
confidence interval for the IS.FEMALE effect in Fig. 15.5.1(b). (Can you see why this is?)

EXERCISE FOR SECTION 15.5.1

Fit a linear regression model to the Fuel Usage Data in Appendix A15.1. using KM.LTR
as the response variable and DIST, MO.JAN, and LONG as explanatory.

1. What can you conclude from the P-value and the sign of the coefficient for the
LONG effect?

2. Obtain and interpret the confidence interval for the true coefficient of LONG.

15.5.2 Including a Factor

A (grouping) factor, or categorical variable, is a variable that specifies which of a set
of groups each individual belongs to. In the SAS package, a factor is called a class
variable. The set of groups are called the levels of the factor. In coursework data set
of Example 15.5.1 and Appendix A15.1, the variable SEX is a factor with two levels
“male” and “female”. DEGREE is a factor with 3 levels (“BA”, “BCom” and “BSc”)
corresponding to the 3 different types of degree students are enrolled for.11 We are going
to want to see the extent to which DEGREE helps explain the differences we see in exam
performance.

11Likewise DEGREE.CODE is a factor with 3 (numeric) levels 1, 2 and 3 which is being used as
numeric codes for“BA”, “BCom” and “BSc” respectively.
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If we want to use a factor with more than 2 levels as an explanatory variable in a
linear model we do so by including in the model a dummy variable for every level of the
factor except one. What effect does this have?

Suppose that our factor has J levels. Let G1 be a dummy variable for being in group
1, G2 be a dummy variable for being in group 2, and so on. Suppose we omit the dummy
variable for the first group. Our linear model is

E(Y ) = β0 + β1x1 + . . .+ βkxk + βG2G2 + βG3G3 + . . .+ βGJGJ

Considering just individuals who have X1 = x1, . . . , Xk = xk, we have the following.

An individual in group 1 is not in any of the other groups and thus has G2 = G3 = . . . =
GJ = 0. Substituting these values into the model, we get

Group 1 individuals: E(Y ) = β0 + β1x1 + . . .+ βkxk.

An individual in group 2 has G2 = 1 and every other Gj = 0, so

Group 2 individuals: E(Y ) = β0 + β1x1 + . . .+ βkxk + βG2 .

By subtracting the Group 1 line from the Group 2 line, we see that βG2 is the difference
in average Y -value between Group 2 individuals and Group 1 individuals (who are the
same on all other X-variables).

An individual in group 3 has G3 = 1 and every other Gj = 0, so

Group 3 individuals: E(Y ) = β0 + β1x1 + . . .+ βkxk + βG3 .

Subtracting the Group 1 line from the Group 3 line, we see that βG3 is the difference in
average Y -value between Group 3 individuals and Group 1 individuals. And so it goes on
for each of the other groups. Thus Group 1 is being treated as a baseline group to which
all other groups are being compared and βGj measures the difference between group j
and group 1, with all other variables being held constant.
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Using a (grouping) factor as an explanatory variable

• Include a dummy variable for every level of the factor except one.

• The omitted group beomes the baseline group to which all other groups
are compared.

• The coefficient for group j is the difference in average Y -values
between group j and the baseline group

(for individuals who are the same on all of the other X-variables.)

• The intercept is the average Y -value for members of the baseline group
with every other Xj = 0.

Alternatively, we can think in terms of the coefficient for group j as giving the differ-
ence in average Y -values between group j and the baseline group once we have adjusted
for (or allowed for, or controlled for, or partialled out) the effects of the other variables
in the model. Of course, we can only apply these interpretations to data if the model
fits.

Example 15.5.2 Looking for Differences by Degree in Exam Marks

This is a continuation of Example 15.5.1 using the data set described in Appendix
A15.1. The people sitting the examinations in Example 15.5.1 were each enrolled for one
of 3 different degrees; a BA (Arts), a BCom (business), or a BSc (science). The variable
DEGREE tells which degree each student is enrolled for. We want to see if there is a
difference in average performance between students enrolled for different degrees.

Since DEGREE is a factor with 3 levels, we include in our model dummy variables
for two of those levels. Output from fitting 2 models is given in Fig. 15.5.2. By default,
Splus/R have put in dummies for the levels BCom and BSc and omitted the level BA.
Thus, the BA group is the baseline group to which the other two groups will be compared.
The coefficient in the degreeBCom row relates to the difference between the BCom group
and the BA group, and the coefficient in the degreeBSc row relates to the difference
between BSc and BA.

EXAM is the response variable for both models. In Fig. 15.5.2(a) we are using
DEGREE as the sole explanatory variable. In Fig. 15.5.2(b), we are using TEST1,
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Coefficients:
            Estimate Std.Error t value Pr(>|t|)
(Intercept)  22.1158    0.6214  35.588  < 2e-16
degreeBCom    1.3683    0.7182   1.905 0.057090
degreeBSc     2.4096    0.6787   3.550 0.000405

Residual standard error: 6.057 on 868 degrees of freedom
Multiple R-Squared: 0.01679, Adjusted R-squared: 0.01452
F-statistic: 7.409 on 2 and 868 degrees of freedom, p-value: 0.0006447

95% C.I.lower  C.I.upper
20.89608       23.33550
-0.04133        2.77795
 1.07752        3.74162

Same as from 1-way ANOVA
when the factor is the only explanatory variable

Regression output CIs added

Coefficients:
            Estimate Std.Error t-value Pr(>|t|)
(Intercept)  3.20947   0.95250   3.370 0.000786
test1        0.85684   0.08822   9.712  < 2e-16
test2        1.47111   0.08587  17.132  < 2e-16
assign       0.03613   0.04148   0.871 0.383994
sex          0.56348   0.30151   1.869 0.061980
degreeBCom   0.98902   0.51258   1.929 0.053998
degreeBSc    0.62368   0.49416   1.262 0.207254

Residual standard error: 4.287 on 864 degrees of freedom
Multiple R-Squared: 0.5098, Adjusted R-squared: 0.5064
F-statistic: 149.7 on 6 and 864 degrees of freedom, p-value:     0

Regression output CIs added

95% C.I.lower  C.I.upper
  1.33998       5.07897
  0.68368       1.03000
  1.30258       1.63964
 -0.04528       0.11753
 -0.02830       1.15526
 -0.01703       1.99508
 -0.34622       1.59359

(a)   Using  DEGREE alone

(b)   Using DEGREE and the  other variables

> anova(fit)
Analysis of Variance Table

Response: exam
           Df  Sum Sq Mean Sq  F value  Pr(>F)
test1       1  9873.0  9873.0 537.2233 < 2e-16
test2       1  6493.2  6493.2 353.3161 < 2e-16
assign      1     0.8     0.8   0.0446 0.83279
sex         1    72.9    72.9   3.9678 0.04669
degree      2    70.6    35.3   1.9219 0.14695
Residuals 864 15878.4    18.4

(c)   An additional ANOVA table

The “no regression” hypothesis now refers to none
 of the variables, including test1, etc. having any effect

FIGURE 15.5.2 Using DEGREE as an explanatory variable.
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TEST2, ASSIGN, and SEX as well as DEGREE as explanatory variables. The former
helps us answer the question, “Are there differences in average exam scores between
students enrolled in different degrees?” The latter helps us answer the question, “Are
there any differences in average exam scores between students enrolled in different degrees
once we have adjusted for the effects of gender and performance during the year?” These
are quite different questions.

When we fit a factor as the sole explanatory variable, we are really doing a 1-way
analysis of variance, and the F -test results for the test for no regression are identical to
the F -test results from a 1-way analysis of variance. The regression intercept estimate is
the sample mean for the baseline (omitted) group, and the regression coefficient estimate
for group j is the difference between the group j sample mean and the baseline sample
mean.

We see from the F -test in Fig. 15.5.2(a) that we have very strong evidence of a
difference in mean test scores between the three different degree groups (P-value ≈ .0006).
The P-value of 0.057 on the degreeBCom line tells us that we have some evidence of a
difference between the BCom group and the BA group, with the 95% confidence interval
for the true difference putting the BCom mean as being somewhere between 0.4 marks
smaller than the BA mean and 2.8 marks larger. Reading the degreeBSc line, we have
very strong evidence of a (positive) difference between the BSc mean and the BA mean.
With 95% confidence the true BSc mean is bigger than the BA mean by between about
1 mark and 3.7 marks. The regression output does not give us a comparison between the
BSc and BCom means. To get test results and confidence intervals for this comparison,
we would have to refit the model changing the omitted level from BA to BCom (or BSc
but not both).

We now turn to the output in Fig. 15.5.2(b). In this case, we have fitted other
variables as well as DEGREE. The “no regression” hypothesis no longer addresses just
the effect of DEGREE but rather “no effect by any of the variables.” Many packages
will give an analysis of variance table similar to that in Fig. 15.5.2(c), which breaks up
the regression sum of squares by variable. Here we see the results of an F -test for a
null hypothesis of no differences between DEGREE groups once we have adjusted for the
effects of gender and performance in on-course assessment. Since P-value ≈ 0.15, there is
no evidence of a difference after adjustment. Thus the differences in exam performance
by DEGREE that we saw in Fig. 15.5.2(a) appear to be explained by gender differences
and differences in performance in on-course assessment. Confidence intervals are also
given in Fig. 15.5.2(b), and they can be interpreted as for (a) with the proviso that we
are now no longer looking at differences between the DEGREE groups as a whole, but
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looking at differences after adjustment. This is the same as looking at differences in
average exam score by DEGREE group, restricted to people with the same gender and
on-course performance scores.

Notes:

1. The models we have fitted assume that the (adjusted) effects of a difference in factor
levels are the same regardless of the values of the other variables. For example, we
are assuming that the true DEGREE differences among people who did well in
on-course assessment are the same as the DEGREE differences among people who
did poorly in on-course assessment. This so-called no interactions assumption can
be tested by checking for the significance of cross products between the factor-level
dummy variables and other variables. This is beyond the scope of the present
account.

2. Some packages (e.g. Minitab and Excel) cannot automatically produce the results
of the overall F -test of no differences between factor levels after adjustment. We
will now show you how to do this “by hand”.

The F-test by hand

The following F -test can be used to test any hypothesis that corresponds to collapsing
a larger regression model (the full model) to a smaller model12 (the collapsed model). The
idea behind the test statistic is as follows. The residual sum of squares (Residual.SS) is
a measure of how well a model fits the data.13 A model with more variables will have
a smaller Residual.SS as it has more flexibility to “get close” to the data points. The
test is based on whether the Residual.SS for the full model is sufficiently smaller than
that for the collapsed model to be convincing evidence that the additional variables are
necessary.

Step 1: Fit the full model.

Let Residual.SSFull, Residual.MSFull and Residual.dfFull be, respectively, the sum of
squares, the mean square, and the degrees of freedom from the residual line of the analysis
of variance table for the full model.

Step 2: Fit the collapsed model.

Let Residual.SSCollapsed be the residual sum of squares for the collapsed model.

12i.e., one with fewer terms.
13In the sense of having predicted values (ŷ) close to the observed y-values.
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Step 3: Form the F -test statistic

f0 =
Residual.SSCollapsed − Residual.SSFull

d× Residual.MSFull
,

where d = Residual.dfCollapsed − Residual.dfFull

Step 4: Obtain the P-value as pr(F ≥ f0),
where F ∼ F (df1 = d, df2 = Residual.dfFull).

This process is depicted in Fig. 15.5.3 using Excel output.

Example 15.5.3 The F-test for Differences by Degree Computed by Hand

We wish to perform the (adjusted) F -test for degree shown in Fig. 15.5.2 “by hand”.

In Step 1, we fit the full model with TEST1, TEST2, ASSIGN, SEX and DEGREE as
explanatory variables and read off the appropriate terms from the output. In Step 2,
we the collapse the above model by omitting DEGREE (because our hypothesis is that
there is no DEGREE effect). Thus the collapsed model includes only includes TEST1,
TEST2, ASSIGN, and SEX. The fitted models from Steps 1 and 2 and the calculation in
Step 3 are presented in Fig. 15.5.3 from which we obtain f0 = 1.92. The P-value (Step
4) is given by pr(F ≥ 1.92), where F ∼ F (df1 = 2, df2 = 864) which gives us P-value =
0.147.

EXERCISES FOR SECTION 15.5.2

1. xxx

2. xxx

3. xxx

QUIZ ON SECTION 15.5

1. What is a binary variable?

2. What is an indicator, or dummy, variable?

3. If we include an indicator variable in a regression model, what does its coefficient measure?

4. How do we include a (grouping) factor as an explanatory variable in a regression model?

5. Which level of the factor becomes the baseline group for comparisons?
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6. What does the coefficient of a dummy variable that has been included (say, the dummy for group
j) measure?

7. What does the intercept term in the model represent?

8. We have learned about a new F -test in Section 15.5.2. What is the purpose of this test? How do
we interpret a small P-value from this test? How do we interpret a large P-value from this test?

9. What major assumption are we making in interpeting the coefficients of dummy variables in the
way we have learned in Section 15.5?
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APPENDIX for Chapter 15: Data Sets

A15.1: Fuel Usage Data

File name: fuel.dat
Description

These data originated from a car’s journey-log kept by a brother of University of
Waterloo statistics professor Jack Robinson over a 12 month period. The car was being
used in Canada and the US. Each time he filled his car with gas (petrol), he recorded
(raw data) his odometer reading (number of kilometers the car had traveled to date;
the date; liters, number of liters of fuel put into the car; and some comments about
servicing. etc. From these the variables below were obtained.

Variables:

odo Odometer reading at fill-up
dist distance traveled in kilometers since last fill up
liters Liters of petrol put into tank on a given fill-up
km.ltr fuel consumption in kilometers traveled per liter
days days since last fill up
long for long trip – (prior fill up less than 2 days earlier).

(1 = yes, 0 = no)
month month of the year with values 1 = Jan, 2 = Feb, etc.
mo.jan months away from January (the coldest month in the year)

e.g., December and February both have mo.jan = 1
November and March both have mo.jan = 2, etc.

A15.2: Coursework Data

File name: coursework.dat
Description

These data consist of the examination and coursework scores for the students doing
second year Data Analysis at Auckland in 1995. At that time, the course ran through the
whole year and students completed 10 Assignments and 2 tests during the year. There
is a great deal of help available for assignments so that anyone who is prepared to put
the work in can get good assignment marks. Our main interest will be in Exam and the
other variables will be treated as explanatory.
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Variables:

exam Mark in the exam, out of 40.
assign Adjusted overall mark for assignments, out of 25
test1 Adjusted mark in test 1, out of 12.5
test2 Adjusted mark in test 2, out of 12.5
sex Gender of student, with levels: male, female
is.female Gender coded 1 = female, 0 = male
degree Degree student is enrolled in, with levels: BA, BSc and BCom
degree.code Degree coded as 1 = BA, 2 = BCom and 3 = BSc


