Introductory Statistics Tutorial Answers Chapter 11 – Tables of Counts

Section A: One-way Tables

- 1. (a) H_0 : Relative market shares are the same as they were prior to Channel A altering its programming, ie $p_A = 0.1, p_B = 0.4, p_C = 0.5$.
 - H₁: Relative market shares differ since Channel A altered its programming, ie the proportions are not $p_A = 0.1$, $p_B = 0.4$, $p_C = 0.5$.
 - **(b)** Degrees of freedom = 3 1 = 2
 - Expected count for Channel $A = 0.1 \times 300 = 30$ Expected count for Channel $B = 0.4 \times 300 = 120$

Expected count for Channel $C = 0.5 \times 300 = 150$

(d) Cell contribution =
$$\frac{(125-120)^2}{120} = 0.2083$$

- (i) P-value = $pr(X^2 \ge 5.0417) = 1 0.9196 = 0.0804$
 - (ii) There is weak evidence that the altered programming for Channel A has affected relative market shares
- The results are valid because all of the expected counts are greater than 5.
- **2.** (a) H_0 : The proportions of the types are $p_{BC} = \frac{9}{16}$, $p_{Bc} = \frac{3}{16}$, $p_{bC} = \frac{3}{16}$, $p_{bC} = \frac{1}{16}$ H_1 : The proportions of the types are not $p_{BC} = \frac{9}{16}, p_{BC} = \frac{3}{16}, p_{bC} = \frac{3}{16}, p_{bC} = \frac{1}{16}$
 - Degrees of freedom = 4 1 = 3
 - (c) Expected count for type BC = $\frac{9}{16}$ x 160 = 90
 - (d) Cell contribution = $\frac{(16-30)^2}{30}$ = 6.5333
 - (i) P-value = $pr(X^2 \ge 9.8667) = 1 0.9803 = 0.0197$
 - (ii) There is strong evidence against the types occurring in the ratio 9:3:3:1

Section B: Two-way Tables

- 1. (a) H_0 : A person's primary source of news is independent of their age. H_1 : There is a relationship between a person's primary source of news and their age.
 - (b) Yes. We could consider the samples of people under 30, people in the 30-49 age group and the people in the 50 and over age group as three independent sub-samples and carry out a Chisquare test of homogeneity with the primary news source as the response factor.
 - (c) Degrees of freedom = $(3-1)(3-1) = 2 \times 2 = 4$
 - (d) Expected count for the (Under 30, Radio) cell = $\frac{225 \times 250}{1000}$ = 56.25
 - (e) Cell contribution = $\frac{(100-51.625)^2}{51.625}$ = 45.330
 - The P-value = 0.000 to 3 decimal places. We have very strong evidence to suggest that there is a relationship between a person's age and their primary news source.
 - (g) The results are valid because all of the expected counts are greater than 5.
- 2. (a) H_0 : The distribution of the opinions is the same for each group. H_1 : The distribution of the opinions is different for at least one group.
 - (b) No. This data has been collected as three independent samples and a Chi-square test for independence requires that the data is collected as one random sample.
 - (c) Degrees of freedom = $(4-1)(3-1) = 3 \times 2 = 6$
 - (d) Expected count for the (Increase government expenditure, Economists) cell $=\frac{64\times100}{300}=21.33$
 - (e) (i) Cell contribution = 0.005
 - (ii) (Increase government expenditure, Government officials) more than expected (Increase government expenditure, Business executives) – fewer than expected (Other business incentives, Business executives) – more than expected
 - (iii) The P-value = 0.000 to 3 decimal places. There is extremely strong evidence that the opinions of the three groups differ.