Introductory Statistics Tutorial Answers

Chapter 6 - Continuous Random Variables

Section A: Probability Density Function Quiz

1. Areas under the density curve represent probabilities. The probability that a random observation falls between a and b is equal to the area between the density curve and the x-axis from $x=a$ and $x=b$.
2. The total area under the curve equals 1 .
3. No, because for a continuous random variable:
$\operatorname{pr}(a \leq X \leq b)=\operatorname{pr}(a<X \leq b)=\operatorname{pr}(a \leq X<b)=\operatorname{pr}(a<X<b)=$ area under the curve between a and b.
4. The parameters are μ and σ.

Section B: Normal Distribution

1. (a) $\operatorname{pr}(X<245)=0.0947$
(b) $\operatorname{pr}(255<X<280)=\operatorname{pr}(X<280)-\operatorname{pr}(X<255)=0.8092-0.2459=0.5633$
(c) $\operatorname{pr}(X>287)=1-\operatorname{pr}(X<287)=1-0.9053=0.0947$
2. Let X be the survival time in months of a cancer patient on this drug.
(a) $\operatorname{pr}(X>x)=0.8$ therefore $\operatorname{pr}(X<x)=0.2$ and so $x=17.6341$. 80% of the patients live beyond 17.6 months.
(b) $\operatorname{pr}(a<X<b)=0.8$
$\operatorname{pr}(X<a)=0.1$ and so $a=10.5932$
$\operatorname{pr}(X<b)=0.9$ and so $b=51.6048$
The range of the central 80% of survival times is from 10.6 to 51.6 months.
3. Let X be the maximum distance reached by a pilot without moving the seat.
(a) $\operatorname{pr}(X \geq 120)=1-\operatorname{pr}(X \leq 120)=1-0.3085==0.6915$
(b) $\operatorname{pr}(X \geq x)=0.95$ therefore $\operatorname{pr}(X<x)=0.05$ and so $x=108.5515$. The maximum distance at which the switch should be placed is 109 cm .
(c) (i) That this pilot's maximum reach is 1.5 standard deviations above the mean.
(ii) $x=125+1.5 \times 10=140 \mathrm{~cm}$. A z-score of 1.5 corresponds to a maximum reach of 140 cm .
