Introductory Statistics Tutorial Chapter 7 – Sampling Distributions of Estimates

- 1. A random sample of size *n* is drawn from a population with mean, μ , and standard deviation, σ . Let \overline{X} be the sample mean.
 - (a) What is the:
 - (i) mean of \overline{X} ?
 - (ii) standard deviation of \overline{X} ?
 - (b) If we are sampling from a Normal distribution then \overline{X} is exactly / approximately (circle one) Normally distributed.
 - (c) (i) If we are sampling from a non-Normal distribution then for large samples (ie, *n* is large) \overline{X} is **exactly** / **approximately** (circle **one**) Normally distributed.
 - (ii) The result in (i) is called the
- A random sample of size n is drawn from a population in which a proportion p has a characteristic of interest. Let P̂ be the sample proportion.
 - (a) What is the:
 - (i) mean of \hat{P} ?
 - (ii) standard deviation of \hat{P} ?
 - (b) For large samples \hat{P} is exactly / approximately (circle one) Normally distributed.
- 3. (a) A ______ is a numerical characteristic of a population.
 - (b) An ______ is a known quantity calculated from data in order to estimate an unknown parameter.
- 4. Suppose that X_1, X_2, \ldots, X_{16} is a random sample from a Normal distribution with mean of 50 and a standard deviation of 10. Then the distribution of the sample mean $\overline{X} = \frac{X_1 + X_2 + \ldots + X_{16}}{16}$ has
 - mean, $\mu_{\overline{x}}$, and standard deviation, $\sigma_{\overline{x}}$, given by:
 - (1) $\mu_{\overline{X}} = 50$, $\sigma_{\overline{X}} = 6.25$
 - (2) $\mu_{\overline{X}} = 50$, $\sigma_{\overline{X}} = 0.625$
 - (3) $\mu_{\overline{X}} = 800, \quad \sigma_{\overline{X}} = 10$
 - (4) $\mu_{\overline{X}} = 50, \quad \sigma_{\overline{X}} = 2.5$
 - (5) cannot be determined because n = 16 is too small for the central limit effect to take effect.

- The fuel consumption, in litres per 100 kilometres, of all cars of a particular model has mean of 7.15 and a standard deviation of 1.2. A random sample of these cars is taken.
 Calculate the mean and standard deviation of the sample mean if:
 - (a) one observation is taken.
 - (b) four observations are taken.
 - (c) sixteen observations are taken.
- 6. About 65% of all university students belong to the student loan scheme. Consider a random sample of 50 students. Let P̂ be the proportion of these 50 students who belong to the student loan scheme.
 (a) In words, describe p.
 - **(b)** State the distribution of \hat{P} .
 - (c) What is the probability that the sample proportion is more than 70%? Use the output below to help you.

Cumulative Distribution Function

Normal with mean = 0.650000 and standard deviation = 0.0674537

х	P(X <= x)
0.4000	0.0001
0.4500	0.0015
0.5000	0.0131
0.5500	0.0691
0.6000	0.2293
0.6500	0.5000
0.7000	0.7707
0.7500	0.9309

7. The owner of a large fleet of courier vans is trying to estimate her costs for next year's operations. Fuel purchases are a major cost. A random sample of 8 vans yields the following fuel consumption data (in km/L):

10.3 9.7 10.8 12.0 13.4 7.5 8.2 9.1 Summary statistics: n = 8, $\bar{x} = 10.125$, s = 1.9477

Assume that the distribution of fuel consumption of the vans is approximately Normal. Construct a two-standard-error interval for the mean fuel consumption of all of her vans.

- 8. Suppose that X₁, X₂, ..., X_n is a random sample of size n from a distribution with mean μ and standard deviation σ. Let X̄ represent the sample mean.
 Which one of the following statements is false?
 - (1) Since $E(\overline{X}) = \mu$, \overline{x} is an unbiased estimate of μ .
 - (2) If X is Normally distributed then $\frac{\overline{X} \mu}{S / \sqrt{n}}$ is a random variable with a Student's *t*-distribution

with parameter degrees of freedom, df, where df = n - 1.

(3) If X is Normally distributed then $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$ is a random variable with a standard Normal

distribution.

- (4) The Central Limit Theorem says that for large samples from a non-Normal distribution, the distribution of ^{X̄ - μ}/_{sd(X̄)} is approximately the standard Normal distribution.
- (5) The Student's *t*-distribution with parameter degrees of freedom, *df*, shows increased variability as *df* increases.