Introductory Statistics Tutorial

Chapter 7 - Sampling Distributions of Estimates

1. A random sample of size n is drawn from a population with mean, μ, and standard deviation, σ. Let \bar{X} be the sample mean.
(a) What is the:
(i) mean of \bar{X} ?
(ii) standard deviation of \bar{X} ?
(b) If we are sampling from a Normal distribution then \bar{X} is exactly / approximately (circle one) Normally distributed.
(c) (i) If we are sampling from a non-Normal distribution then for large samples (ie, n is large) \bar{X} is exactly / approximately (circle one) Normally distributed.
(ii) The result in (i) is called the
2. A random sample of size n is drawn from a population in which a proportion p has a characteristic of interest. Let \hat{P} be the sample proportion
(a) What is the:
(i) mean of \hat{P} ?
(ii) standard deviation of \hat{P} ?
(b) For large samples \hat{P} is exactly / approximately (circle one) Normally distributed.
3. (a) A \qquad is a numerical characteristic of a population.
(b) An \qquad is a known quantity calculated from data in order to estimate an unknown parameter
4. Suppose that $X_{1}, X_{2}, \ldots, X_{16}$ is a random sample from a Normal distribution with mean of 50 and a standard deviation of 10. Then the distribution of the sample mean $\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{16}}{16}$ has mean, $\mu_{\bar{X}}$, and standard deviation, $\sigma_{\bar{X}}$, given by:
(1) $\mu_{\bar{X}}=50, \quad \sigma_{\bar{X}}=6.25$
(2) $\mu_{\bar{X}}=50, \quad \sigma_{\bar{X}}=0.625$
(3) $\mu_{\bar{X}}=800, \quad \sigma_{\bar{X}}=10$
(4) $\mu_{\bar{X}}=50, \quad \sigma_{\bar{X}}=2.5$
(5) cannot be determined because $n=16$ is too small for the central limit effect to take effect.
5. The fuel consumption, in litres per 100 kilometres, of all cars of a particular model has mean of 7.15 and a standard deviation of 1.2. A random sample of these cars is taken.
Calculate the mean and standard deviation of the sample mean if:
(a) one observation is taken.
(b) four observations are taken.
(c) sixteen observations are taken
6. About 65% of all university students belong to the student loan scheme. Consider a random sample of 50 students. Let \hat{P} be the proportion of these 50 students who belong to the student loan scheme.
(a) In words, describe p.
(b) State the distribution of \hat{P}.
(c) What is the probability that the sample proportion is more than 70% ? Use the output below to help you.

Cumulative Distribution Function

Normal with mean $=0.650000$ and standard deviation $=0.0674537$

x	$P(x<=x)$
0.4000	0.0001
0.4500	0.0015
0.5000	0.0131
0.5500	0.0691
0.6000	0.2293
0.6500	0.5000
0.7000	0.7707
0.7500	0.9309

7. The owner of a large fleet of courier vans is trying to estimate her costs for next year's operations. Fuel purchases are a major cost. A random sample of 8 vans yields the following fuel consumption data (in km / L):

$$
\begin{array}{llllllll}
10.3 & 9.7 & 10.8 & 12.0 & 13.4 & 7.5 & 8.2 & 9.1 \\
\text { Summary statistics: } n=8, \bar{x}=10.125, s=1.9477 & &
\end{array}
$$

Assume that the distribution of fuel consumption of the vans is approximately Normal.
Construct a two-standard-error interval for the mean fuel consumption of all of her vans.
8. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n from a distribution with mean μ and standard deviation σ. Let \bar{X} represent the sample mean.
Which one of the following statements is false?
(1) Since $\mathrm{E}(\bar{X})=\mu, \bar{x}$ is an unbiased estimate of μ.
(2) If X is Normally distributed then $\frac{\bar{X}-\mu}{S / \sqrt{n}}$ is a random variable with a Student's t-distribution with parameter degrees of freedom, $d f$, where $d f=n-1$.
(3) If X is Normally distributed then $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ is a random variable with a standard Normal distribution.
(4) The Central Limit Theorem says that for large samples from a non-Normal distribution, the distribution of $\frac{\bar{x}-\mu}{\operatorname{sd}(\bar{X})}$ is approximately the standard Normal distribution.
(5) The Student's t-distribution with parameter degrees of freedom, $d f$, shows increased variability as $d f$ increases.

