Introductory Statistics Tutorial Answers Chapter 7 – Sampling Distributions of Estimates

1. (a) (i)
$$\mu_{\overline{X}} = \mu$$
 (ii) $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$

(b)
$$\overline{X}$$
 is **exactly** Normally distributed.

(c) (i)
$$\overline{X}$$
 is approximately Normally distributed.

2. (a) (i)
$$\mu_{\hat{p}} = p$$
 (ii) $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$

(b) For large samples
$$\hat{P}$$
 is **approximately** Normally distributed.

5. (a)
$$\mu_{\overline{X}} = 7.15$$
 litres $\sigma_{\overline{X}} = \frac{\sigma_X}{\sqrt{n}} = \frac{1.2}{\sqrt{1}} = 1.2$ litres

(b)
$$\mu_{\overline{X}} = 7.15$$
 litres $\sigma_{\overline{X}} = \frac{\sigma_X}{\sqrt{n}} = \frac{1.2}{\sqrt{4}} = 0.6$ litres

(c)
$$\mu_{\overline{X}} = 7.15$$
 litres $\sigma_{\overline{X}} = \frac{\sigma_X}{\sqrt{n}} = \frac{1.2}{\sqrt{16}} = 0.3$ litres

(b)
$$\mu_{\hat{p}} = 0.65$$
 $\sigma_{\hat{p}} = \sqrt{\frac{0.65(1 - 0.65)}{50}} = 0.0675$

$$\hat{P} \sim \text{approx Normal } (\mu = 0.65, \sigma = 0.0675)$$

(c)
$$\operatorname{pr}(\hat{P} > 0.7) = 1 - 0.7707 = 0.2293$$

7.
$$\overline{x} \pm 2 \times \frac{s}{\sqrt{n}}$$
 = 10.125 \pm 2 \times \frac{1.9477}{\sqrt{8}}

$$=(8.75, 11.50)$$

8. (5)