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Chapter 7

Exercises for Section 7.2.1

1. (a) To halve sd(X) we need 22 = 4 times as many observations which is 40 in total
or 30 in addition to the 10 we already have.

(b) To reduce sd(X) to one third of its original size we need 32 = 9 times as many
observations which is 90 in total or 80 in addition to the 10 we already have.

(c) To reduce sd(X) to one 9th of its original size we need 92 = 81 times as many
observations which is 810 in total or 800 in addition the 10 we already have.

2. Let X be the monthly profit. Then X ∼ Normal(µ = 10, σ = 3.5) so that X ∼
Normal(µ

X̄
= 10, σ

X̄
= 3.5√

6
= 1.4289). Using these values for µ

X̄
and σ

X̄
, pr(X > 8.5) =

0.8531 (computer).

Exercises for Section 7.2.2

1. We can assume approximate Normality as n = 50. HenceX is approximately Normally
distributed with µ

X̄
= 100 and σ

X̄
= 15√

50
= 2.1213 giving pr(X < 97) ≈ 0.07865. (8%)

2. Let X be the average service time. We can assume approximate Normality as n = 50.

(a) As X is approximately Normally distributed with µ
X̄

= 3.1 and σ
X̄

= 1.2√
50

=

0.16971), pr(X < 3.3) ≈ 0.8807.
(b) Total = T = 50X is approximately Normally distributed with mean µT = 50 ×

3.1 = 155 and standard deviation σT =
√

50 × 1.2 = 8.4853. Thus, pr(T <
150) ≈ 0.2778.

3. (a) Although n is only 28 we shall assume we can use the Normal approximation.
Then, X ∼ Normal(µ

X̄
= 620.6, σ

X̄
= 241.5√

28
= 45.6392) so that pr(X ≥ 795.1) ≈

0.0001.
No, we do not believe they are the same. Testosterone levels seem to be higher
in smokers. We used the mean and standard deviation for nonsmokers in our
calculations. The probability is almost zero that a sample of nonsmokers of this
size would have a mean testosterone level as high as we observed in our sample
of smokers.

(b) Assuming that the serum level X for nonsmokers has, approximately, a Normal
(µ = 620.6, σ = 241.5) distribution, the proportion above 795.1 is given by
pr(X ≥ 795.1) = 0.2350.

(c) No, as these answers deal with different quantities. In (a) we are dealing with
a sample mean (average) of measurements taken from 28 men. If we repeatedly
took such samples, the sample mean would almost never be 795.1 or bigger (ap-
proximately 9999 samples in every 10,000 taken would give a value of x smaller
than 795.1). In (b) we are dealing with the behavior of single individuals. Single
individuals quite often give a value of 795.1 or bigger (in fact 23.5% of individuals
do). The reason why this is happening is that individual measurements are more
variable than averages are.
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Exercises for Section 7.2.3

1. (a)

Passage time

5.0 5.2 5.4 5.6

(b) se(x) = s
X√
n

= 0.1195. Now x± 2se(x) = 5.3117 ± 2× 0.1195, or [5.07, 5.55].
This has been added to plot above.

(c) Since 5.8− 5.3117
0.1195 = 4.09, the value 5.8 is 4.09 standard errors above the sample

mean from the data.

2. (a) se(x) = 57.696. The two-standard-error interval is x±2se(x) = 795.1±2×57.696,
or [679.7, 910.5]. It is a fairly safe bet that the true value is somewhere between
680 and 911 ng/dL.

(b) No, the value 620.6 ng/dL is not plausible as, since 620−6−795.1
57.696 = −3.14, this

value is more than 3 standard errors below the estimate we obtained from our
data. Alternatively, we could reach this conclusion by noting that 620.6 lies
outside our 2-standard-error interval for the true mean.

3. Using a 2 standard-error interval, x ± 2se(x) = x ± 2 sX√
n

= 250 ± 2 × 50√
40

, i.e.,
[234.2, 265.8]. It is a fairly safe bet that the true average daily rate lies somewhere
between $234 and $266.

Exercises for Section 7.3.1

1. (a) Since p̂ ± 2se(p̂) = 0.39 ± 2
√

0.39×0.61
90 , or [0.29, 0.49], it is a fairly safe bet that

the true percentage of music students with fathers in the highest socioeconomic
group lies somewhere between 29% and 49%.

(b) No, the value 0.23 or 23% is not plausible as, since 0.23− 0.39
0.05141 = −3.1, the value

0.23 is 3.1 standard errors below our data estimate.
Alternatively, we could reach the same conclusion by noting that 0.23 lies outside
our two-standard-error interval for the true value.

2. Professionals: 0.32 ± 2
√

0.32×0.68
2280 , i.e., [0.30, 0.34]. It is a fairly safe bet that the

true percentage of Yahoo users who are professionals lies somewhere between 30% and
34%.
University : 0.4 ± 2

√
0.4×0.6

2280 , i.e., [0.38, 0.42]. It is a fairly safe bet that the true
percentage of Yahoo users who have been to university lies somewhere between 38%
and 42%. [All of this assumes that we are making inferences from a random sample
of Yahoo users.]

3. We could work from a two-standard-error interval, namely, p̂ ± 2se(p̂) = 0.48 ±
2
√

0.48×0.52
825 , or [0.445, 0.515], and then argue that there are values of p above 50%
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(namely, 0.5 to 0.515) that are plausible values because they lie in the interval. Alter-
natively, we could argue that as 0.5 (50%) is only (0.5−0.48)/

√
0.48× 0.52/825 = 1.15

standard errors above our data estimate of 0.48, some values of p greater than 0.5 are
plausible.

4. (a) The two-standard-error interval is p̂± 2se(p̂) = 0.176± 2
√

0.176×0.824
8000 , or

[0.167, 0.185]. It is a fairly safe bet that the true percentage of American women
who had been raped lies somewhere between 16.7% and 18.5%.

(b) The two-standard error interval is 0.216 ± 2
√

0.216×0.784
1323 , or [0.19, 0.24], indi-

cating that somewhere between 19% and 24% of all American women who had
been raped were under 12 when first raped. [Note that the interval in (b) is
considerably wider than that in (a) indicating greater uncertainty about the true
percentage.]

(c) The two-standard error interval is 0.558 ± 2
√

0.558×0.442
1323 , or [0.531, 0.585], indi-

cating that somewhere between 53% and 59% of all American women who had
been raped were under 18 when first raped.

Exercises for Section 7.5

1. (a) se(p̂11 − p̂13) =
√

se(p̂11)2 + se(p̂13)2 =
√

0.0312 + 0.0302 = 0.04314.

(b) 0.474−0.303
0.04314 = 3.96. The two sample proportions are nearly 4 standard errors

apart clearly signalling that the corresponding true proportions smoking at least
once in grades 11 and 13 are different. There is a real drop off.

(c) The two-standard-error interval is p̂11 − p̂13 ± 2se(p̂11 − p̂13) = 0.474 − 0.303 ±
2 × 0.04314, or [0.09, 0.26]. It is a fairly safe bet that the true percentage of
grade 11 students using cigarettes at least once was larger than the corresponding
percentage for grade 13 students by somewhere between 9 and 26 percentage
points.

(d) For discussion. Some possibilities include students tending to experiment in grade
11 and then not continuing to smoke, the possibility that the group of students
who stop attending school between grades 11 and 13 includes a higher proportion
of the smokers, or that there are different social dynamics in different years of
students.

2. We will denote observations 1–6 as being from group 1 and observations 7–29 as being
from group 2. Then, x1 = 5.3117, s1 = 0.2928: x2 = 5.4835, s2 = 0.1904.

(a) se(x2 − x1) =
√

s21
n1

+ s22
n2

=
√

0.29282

6 + 0.19042

23 = 0.1260.
As the two sample means are only 5.4835−5.3117

0.126 = 1.36 standard errors apart,
we have no evidence that the corresponding true means differ. Thus we have
no evidence that changing the wire changed the quantity the experiment was
measuring.
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(b) The two-standard-error interval is x2−x1± 2se(x2−x1) = 5.4835− 5.3117± 2×
0.126, or [−0.08, 0.42]. The quantity being measured after changing the wire could
be anywhere between 0.08 units smaller and 0.42 units bigger than the quantity
being measured before the wire was changed. This includes the possibility of “no
change.”

3. p̂before − p̂after = 0.31− 0.20 = 0.11. Then,

se(p̂before − p̂after) =

√
p̂before(1− p̂before)

nbefore
+

p̂after(1− p̂after)
nafter

=

√
0.31× 0.69

186
+

0.2× 0.8
97

= 0.05291.

(a) As 0.31−0.20
0.05291 = 2.08, the sample proportions are more than 2 standard errors

apart. It is a fairly safe bet that there was a real change.

(b) The two-standard-error interval is 0.11±2×0.0529, or [0.004, 0.216]. It is a fairly
safe bet that the percentage having a one-time encounter in the past 3 months
decreased by somewhere between about 0.4 and 22 percentage points.

(c) The population of people who use the clinic “frozen” at the two different points in
time. We were assuming that the sets of people questioned were random samples
from these two populations.

(d) We would tend to believe that it was the anouncement if there were no other
changes we could think of which might have affected the types of people visiting
the clinic or their behavior. We would want to investigate what else had changed
over this period.

4. (a) In each case, x ± 2se(x) = x ± 2 sX√
n

gives a two-standard-error interval for the
true mean for the relevant group.
None: 620.6± 2× 241.5√

62
, or [559, 682].

1 – 30 : 715.6± 2× 248.0√
31

, or [627, 805].
31 – 70 : 795.1± 2× 305.3√

28
, or [680, 910].

(b) (i) The two-standard-error interval is x31−70 − xnone ± 2se(x31−70 − xnone) =

795.1 − 620.6 ± 2
√

305.32

28 + 241.52

62 , or [44, 305], which places the true mean
testosterone level for the 31–70 group as being somewhere between 44 and
305 ng/dL higher than the true mean for nonsmokers. It is not plausible
that there is no difference.

(ii) The two-standard-error interval is x1−30 − xnone ± 2se(x1−30 − xnone) =

715.6− 620.6± 2
√

248.02

31 + 241.52

62 = 95± 108, or [−13, 203]. The true mean
testosterone level for the 1–30 group is somewhere between being 13 ng/dL
below and 305 ng/dL higher than the true mean for nonsmokers. This in-
cludes the possibility that there is no difference at all. It is plausible that
there is no difference.

(c) We can’t use individual two-standard-error intervals for making comparisons
when there is overlap as the combined variation is not taken into account properly
– see Section 7.5.3.
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(d) We have an observational study and not a controlled experiment. There could be
some other variable related to both smoking and testosterone that is causing the
relationship we see. The causal influence could even be in the other direction.
Perhaps high-testosterone men are more likely to take up smoking.

(e) No, we cannot reach any such conclusion. The two-standard-error intervals refer
only to the true means and say nothing about any other aspect of the distribu-
tions. We see from Fig. 7.5.2 that there is actually a great deal of overlap in the
testosterone levels of the groups.

Review Exercises 7

1. The first 2 parts of this question concern ideas in Section 6.4.4 (see the paragraph
entitled Independent individuals versus Clones).

(a) Here Y = Sum =
∑7
i=1Xi so that µ

Y
= nµ

X
= 7×87 = 609 and σ

Y
=
√
nσ

X
=√

7× 23 = 60.85.

(b) Here W = 7X so that µ
W

= 7×µ
X

= 7× 87 = 609 and σ
W

= 7×σ
X

= 7× 23 =
161.

(c) For a sample mean from a random sample of size n = 36, µ
X̄

= µ
X

= 87 and

σ
X̄

= σ
X

n = 23
6 = 3.83.

(d) Normal; the central limit theorem.

(e) It would have the same mean and smaller spread. More technically, as 144 =
4×36, the standard deviation of X for a sample of size 144 is one half as large as
it is for a sample of size 36. If the original distribution was extremely non-Normal
the distribution might also be more Normal looking.

2. Let X = score for a single die. pr(X = i) = 1
6 for i = 1, 2, 3, 4, 5, 6.

(a) Theory tells us that E(X) = E(X) =
∑
xpr(x) = 1× 1

6 +2× 1
6 + . . .+6× 1

6 = 3.5.

(b) Taking the median and mean of the 3 observations given for each experiment
gives the following table:

Expt. No 1 2 3 4 5 6 7 8 9 10
Medians, M 4 5 4 3 5 2 3 5 3 2
Means, x 4 4 1

3 4 3 1
3 4 3 2 2

3 4 3 1
3 3

The sample mean and standard deviation of the 10 sample medians are respec-
tively xmed = 3.6 and smed = 1.174.
The sample mean and standard deviation of the n = 10 sample means are
xmean = 3.567 and smean = 0.5676.

(c) The frequencies for the medians and means are as follows:

Interval 1.5 - 2.5 2.5 - 3.5 3.5 - 4.5 4.5 - 5.5
Frequencies for medians 2 3 2 3
Frequencies for means 0 5 5 0

91



Instructor’s Manual Chapter 7

Histograms:

1 2 3 4 5 6

1 2 3 4 5 6

1

2

3

4

5

1

2

3
MEDIANS

MEANS

(d) From (b), we see that the standard deviation for the set of means from the 10
different samples is less than 1

2 of that for the medians. Thus the median is
subject to a higher degree of sampling variation than the mean. This conclusion
is backed up by our histograms: the data for the means is all contained in the
interval 2.5 - 4.5. but that for the medians is spread over 1.5 - 5.5 (which is twice
as wide).

3. (a) X ∼ Binomial(n = 870, p = 0.79).

(b) Suppose the true value of p really was p = 0.79. Then sd(p̂) =
√

p(1−p)
n =√

0.79×0.21
870 = 0.01381. Now 0.3897−0.79

0.01381 ≈ −29. The observed data value is 29
standard deviations below 0.79. This would virtually never happen if the selection
was random. We do not believe that the jury drawing was at random.

(c) Suppose the true value of p really was p = 0.06. Then sd(P̂ ) =
√

p(1−p)
n =√

0.06×0.94
405 = 0.01180. Since 0.037−0.06

0.0118 = −1.95 the observed data value is almost
2 standard deviations below 0.06. Values this far away would seldom occur if
hiring was at random.

(d) The first recommendation questions the randomness of the jury selection process
whereas the second questions whether a particular factor, race in this case, was
involved in the teacher-hiring process. The first does not attempt to apportion
blame to any factor in the event that the selection process was not random; the
second does tend to attribute blame on racial discrimination as a primary factor
in the event that the selection process was not random. The first limits “suspect”
to applying to a specific group, namely social scientists while the second makes
no such limitation.

(e) A prima facie case is a case considered strong enough that it must be answered
in court. While the occurrence of gross statistical disparities is an indication that
the selection of teachers is not random, the factors that are used as criteria in
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the hiring process may not be necessarily based on any desire to discriminate.
Reasons for the decision: Past experience in other areas may have pointed to the
practice of discrimination, and the strong opinion is an expression of the Court’s
disapproval in Law. Discrimination is hard to prove so that the opinion expressed
tends to shift the burden onto proving nondiscrimination.
Reasons against: In the absence of further evidence, it is dangerous to blame just
one factor in the actual hiring process.
Suppose, for example, that hiring was done blindly on the basis of qualifications.
It might be that several factors including past discriminatory practices at other
levels may have led to black teachers having lower qualifications on average.
Basing hiring decisions on qualifications would then lead to a lower proportion of
black teachers being hired. Would this make using qualifications discriminatory?
Should the problem of black teachers being under-represented be attacked using
the hiring process or at other levels? Political processes have long struggled with
issues like this without reaching solutions that everybody can live with. So we
leave it for you to decide!

4. (a) Using sd(P̂ ) =
√

p(1−p)
n =

√
0.25
n , we obtain (i) 0.050 (ii) 0.01581 (iii) 0.005.

(b) (i) As P̂ is approximately Normal with µ
P̂

= 0.5 and σ
P̂
[= sd(P̂ )] = 0.050,

pr(0.49 ≤ P̂ ≤ 0.51) ≈ 0.1585.

(ii) As P̂ is approximately Normal with µ
P̂

= 0.5 and σ
P̂

= 0.0158110,

pr(0.49 ≤ P̂ ≤ 0.51) ≈ 0.4729.

(iii) As P̂ is approximately Normal with µ
P̂

= 0.5 and σ
P̂

= 0.005,

pr(0.49 ≤ P̂ ≤ 0.51) ≈ 0.9545.

*(c) Because of the symmetry of the approximate Normal distribution of P̂ about
µ

P̂
= 0.5, if pr(0.499 ≤ P̂ ≤ 0.501) = 0.95 then pr(P̂ ≤ 0.501) = 0.975. For

the standard Normal pr(Z ≤ 1.9600) = 0.975. This tells us that 0.501 must be

1.96 standard deviations above the mean, i.e., 0.501 = 0.5 + 1.96
√

0.25
n so that

0.001 = 1.96
√

0.25
n . Solving algebraically for n we obtain n =

(
1.96
0.001

)2 × 0.25 =
960,400 which is almost a million.

(d) If X is the number of heads, then X has a Binomial distribution with E(X) = np
and sd(X) =

√
np(1− p). Now the difference between the number of heads

and the number of tails is D = X − (n − X) = 2X − n so that, with p = 1
2 ,

E(D) = 2 E(X) − n = 2np − n = 2 × n × 0.5 − n = 0 and sd(D) = 2 sd(X) =
2
√
n× 0.5× 0.5 =

√
n.

(e) The difference between the number of heads and the number of tails becomes
more variable as number of tosses made increases.

5. (a) Let P̂ be the proportion of voters who voted for her. Then P̂ is approximately

Normally distributed with µ
P̂

= p = 0.6 and σ
P̂

=
√

p(1−p)
n =

√
0.6×0.4

n .

(b) When n = 200, σ
P̂

=
√

0.6×0.4
200 = 0.03464 so that pr(P̂ > 0.5) = 0.998.
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6. (a) Let P̂ be the proportion of defects in the sample and p be the true proportion
in the whole batch. Then P̂ is approximately Normally distributed with µ

P̂
= p

and σ
P̂

=
√

p(1−p)
400 . If p = 0.05 then µ

P̂
= 0.05 and σ

P̂
=
√

0.05×0.95
400 = 0.01090.

We want the cutoff value c so that pr(P̂ > c) = 0.10, or equivalently, pr(P̂ ≤
c) = 0.90. This is an inverse-probability problem (cf. Fig. 6.2.6). Using our
values for the mean and standard deviation, programs return c = 0.0640. If
c = 0.0640 is the sample proportion above which we want to stop accepting
batches, the number of defectives in a sample at which we refuse the batch should
be M = 400 × 0.0640 = 25.6. However, M must be a whole number so we will
take M = 25.

(b) If the true proportion of defects is 0.02, then µ
P̂

= 0.02 and σ
P̂

=
√

0.02×0.98
400 =

0.007. Using these values, pr(P̂ > 25
400 = 0.0625) is approximately 0 (it is much

less than 1 in a million).

*(c) Let C be the cutoff value. For a standard Normal pr(Z < −1.28155) = pr(Z >
1.28155) = 0.10. Thus our cutoff must be 1.28155 standard deviations below the
mean when p = 0.05, giving

C = 0.05− 1.28155

√
0.05× 0.95

n
simplified to

√
n(C − 0.05) = −0.27931.

It must also be 1.28155 standard deviations above the mean when p = 0.02 giving

C = 0.02 + 1.28155

√
0.02× 0.98

n
simplified to

√
n(C − 0.02) = +0.17942.

Solving these 2 equations algebraically for both C and n we get C = 0.0317 and
n = 234.

7. (a) µ
X

= E(X) =
∑
xpr(x) = 1× 20

38 + (−1)× 18
38 = 2

38 = 0.05263.∑
(x − µ

X
)2pr(x) = (1 − 0.05263)2 × 20

38 + (−1 − 0.05263)2 × 18
38 = 0.99723.

σ
X

= sd(X) =
√

0.99723 = 0.9986 ≈ 1.

(b) (i) We are working with a sum from a random sample of size n = 50 from
this distribution so E(Sum) = nµ

X
= 50 × 0.05263 = 2.6315 and sd(Sum) =√

nσ
X

=
√

50× 0.9986 = 7.0612.
(ii) E(X) = µ

X
= 0.05263 and sd(X) = σ

X√
n

= 0.9986√
50

= 0.14122.

(c) Basically already done in (b). (i) µSum = n× 0.05263 and σSum =
√
n× 0.9986.

(ii) µ
X̄

= 0.05263 and σ
X̄

= 0.9986√
n

.

(d) The casino makes money if the average winnings from the 50 bets exceeds $0.
The gambler makes money if the average is less than $0. When n = 50 we have
X ∼ Normal(µ

X̄
= 0.05263, σ

X̄
= 0.14122) so that pr(X < 0) = 0.3547. Thus,

after 50 bets, approximately 35% of gamblers have made money.

(e) X ∼ Normal (µ
X̄

= 0.05263, σ
X̄

= 0.9986√
n

). When n = 1000, σ
X̄

= 0.031579 and

pr(X < 0) = 0.0478. After 1000 bets, approximately 1 person in 20 has made
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money. When n = 100, 000, σ
X̄

= 0.003158 and pr(X < 0) ≈ 10−62. Essentially

no one has made money (except the casino of course). The probability is even
smaller after a million bets.

(f) We have drastically rounded the data in the following table as we only want to
give a broad picture. We have used 3 standard deviations about the mean each
time so we are getting the range of values within which the result will fall 99.7%
of the time. These intervals relate to the casino’s winnings.

n Average Total
µ
X
± 3σX√

n
nµ ± 3

√
nσ

X
)

50 0.0526 ± 0.4237 [-0.37,0.48] [-18.5,24]
1000 0.0526 ± 0.0947 [-0.04,0.15] [-40,150]

100,000 0.0526 ± 0.0095 [0.043,0.062] [4300,6200]
1,000,000 0.0526 ± 0.0030 [0.050,0.056] [50,000, 56,000]

8. (a) Using a random sample, as we have here, the sample proportion is an unbiased
estimate of the population proportion.

(b) This is not the population we sampled. People’s opinions could change from July
to September.

(c) This is not the population we sampled. “Public eating establishments” also
includes places other than restaurants.

9. We use sd(P̂ ) =
√

p(1−p)
n =

√
0.4×0.6

n . We have to think about what n should be.

(a) Units are couples and we have n = 100 of them so sd(P̂ ) = 0.4×0.6√
100

= 0.024.

(b) Units are individuals and we have n = 200 of them so sd(P̂ ) = 0.4×0.6√
200

= 0.0170.

(c) The reality will be between the two extremes of (a) and (b). Individuals within
a married couple do not necessarily think alike but they are more likely to think
alike than are any two random individuals. Thus the variability in P̂ values will
be larger than predicted by (b) and smaller than predicted by (a). We would
tend to favor (a) which overstates the uncertainty.

10. An opportunity sample (like Kinsey’s) will almost certainly provide heavily biased
estimates of things like population proportions. Having a large sample size does not
help – see Section 1.1. We would always trust a smaller random sample over a larger
opportunity sample.
The quotation is perpetuating the myth that we need larger samples to investigate
larger populations and also the myth that bigger samples are more reliable. Where
populations are large so that samples constitute a small part of the population, a
sample of 1000 say provides equally precise estimates for proportions of a population
of size 100,000,000 as it does for 100,000. They have ignored the critical issue of how
the sample was obtained.

11. (a) se(p̂) =
√

p̂(1−p̂)
n =

√
(0.66)(0.34)

943 = 0.0154.

(b) se(p̂) =
√

p̂(1−p̂)
n =

√
0.5×0.5

172 = 0.0381.
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(c) 0.0381
0.0154 = 2.47 times bigger.

(d) se(p̂1 − p̂2) =
√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

=
√

0.67×0.33
221 + 0.5×0.5

172 = 0.0495.

(e)
√

0.67×0.33
221 = 0.0316. The ratios are 0.0495

0.0316 = 1.57 times bigger and 0.0495
0.0381 = 1.30

times bigger.

(f) It will be too small for looking at proportions calculated from subsets of the data
and for looking at differences between proportions. The poll will appear to be
more accurate than it really is in these situations. See Section 8.5.3 for a detailed
discussion of these issues.

12. (a) se(x1 − x2) =
√

s21
n1

+ s22
n2

=
√

1.822

53 + 1.532

60 = 0.3186.

(b) The two-standard-error interval is 7.90− 4.30± 2× 0.3186 = [2.96, 4.24].

(c) As this interval is well away from zero, sexual content seems to make a difference.
The true mean number of correctly remembered brands under these conditions
is likely to be greater when sexual content is present by somewhere between 3.0
and 4.2 brands than when it is absent. There is too little information for us
to criticize the experiment. We would hope, however, that the complete set of
students was split into two groups at random.

13. (a) The proportion of the sample of downtown cap wearers who wear their caps back-
wards is p̂dntn = 174

407 = 0.4275. The corresponding two-standard-error interval is

0.4275 ± 2
√

0.4275×0.5725
407 giving [0.378, 0.477]. This suggests that the true pro-

portion of downtown cap wearers who wore their caps backwards at this time was
somewhere between about 38% and 48%.

(b) For business school cap wearers, the proportion of the sample who wore their caps
backward is p̂bus = 107

319 = 0.3354. The standard error of the difference in sample

proportions, se(p̂dntn − p̂bus) =
√

0.4275×0.5725
407 + 0.3354×0.6646

319 = 0.03606. As
(0.4275−0.3354)

0.03606 = 2.55, the two sample proportions are more than 2 se(p̂dntn−p̂bus)
apart suggesting that the true proportions are in fact different.

(c) No. They do not conflict as se(p̂dntn − p̂bus) < se(p̂dntn) + se(p̂bus). See Sec-
tion 7.5.3 for a discussion.

(d) Yes. As the individual intervals do not overlap we know that the two-standard-
error interval for the difference will not contain zero in each case (see Sec-
tion 7.5.3).

(e) If we just observe individuals moving past some location, we will often get people
in groups who are likely to do similar things like wearing their caps the same way,
thus violating the independence assumption. We might also be getting a biased
sample. The types of people walking past the locations we choose to observe may
tend to behave differently from those found at other locations. Locations would
have to be sampled carefully to avoid this.

14. (a) Looking across rows, the main trend we see is that these students tend to overes-
timate their grades. Overestimation appears to be most pronounced for low-GPA
students where 33 of the 41 students overestimate with only 4 underestimating
and 4 predicting correctly. The effect is less pronounced with high GPA students.
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(b) Low : p̂L = 33
41 = 0.8049, high: p̂H

22
44 = 0.4773. The standard error of the

difference in sample proportions is se(p̂L−p̂H) =
√

0.8049×0.1951
41 + 0.4773×0.5227

44 =
0.09747. As (0.8049 − 0.4773)/0.09747 = 3.361034, p̂L is more than 3 standard
errors larger than p̂H . It is a fairly safe bet, therefore, that the true value of pL
is larger than the true value of pH , i.e., that low GPA students are more likely
to overestimate their grades than are high GPA students.
Alternatively, we could argue by constructing a two-standard-error interval for
the true difference pL− pH , namely 0.8049− 0.4773± 2× 0.09747, or [0.13, 0.52].
For all values in this interval, the difference is greater than zero, i.e., pL is larger
than pH .

(c) Suppose we have grades ranging from A=best, B, C, D=worst. We will consider
two extreme cases. If you usually get D’s it is going to be hard to underestimate.
All available choices for a prediction apart from D will usually correspond to an
overestimate. On the other hand, if you usually get A’s all predictions except A
will usually correspond to an underestimate.

15. (a) se(xbottle − xbreast) =
√

15.182

90 + 17.392

210 = 2.00.

Since (103.0−92.8)
2.00 = 5.1, the sample mean for breast-fed babies xbreast is more

than 5 standard errors bigger than the sample mean for bottle-fed babies, so we
conclude that the true mean IQ for breast-fed babies is larger than the true mean
IQ for bottle-fed babies.

(b) The two-standard-error interval for the true difference µbreast−µbottle is given by
(103.0− 92.8)± 2× 2.00, or [6.2, 14.2]. This suggests that the true mean IQ for
breast-fed babies is larger than that for bottle-fed babies by somewhere between
6 and 14 units.

(c) Preterm, low-birth-weight babies in the catchment areas of these special-care
units fitting the profiles that trigger referral to these units.

(d) No, because this is observational data. Mothers chose to breast feed or not to
breast feed. There was no random assignment. It may be, for example, that
higher IQ mothers are more likely to choose to breast feed than lower IQ mothers
and it is this (or one of a host of other possible differences) that leads to the
observed IQ differences in the babies.

(e) Yes, as it partially answers the objection we raised in (d). We might expect
mothers who wanted to breast-feed but could not (for physical reasons) to have
similar IQs to those that wanted to and could. We note that the IQs of the
babies of the wanted-to-but-couldn’t group were similar to the IQs of the bottle-
fed babies, and not to the breast-fed babies. This strengthens the impression
that it is the breast-feeding itself that is causing the difference we are seeing.

16. (a) We would expect positive contrasts to increase the self-ratings and negative con-
trasts to decrease the self-ratings (for both males and females).

(b) Yes. We notice that the effect of the contrasts seems to be smaller for females
than it is for males. (The shorter intervals also suggests less variation among
females than among males.)
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(c) 21.16−18.28±2
√

4.312

22 + 3.262

20 , or [0.53, 5.2]. This interval does not contain zero
so that there is some evidence of a difference between the true means. Overlap-
ping confidence intervals do not necessarily tell us that no difference has been
established as the true standard error of the difference is less than the sum of the
individual standard errors (see Section 7.5.3).

(d) (Reasoning from non-overlapping intervals)
Males: Self-ratings following positive contrasts are higher on average than those
following control conditions and negative contrasts.
Females: Self-ratings for positive contrasts are higher on average than for negative
contrasts.

(e) Females: The difference in sample means is 18.28−15.15 = 3.13 and the standard

error associated with that difference is
√

3.262

20 + 2.962

21 = 0.9740.

(f) Males: The difference in sample means is 21.16− 14.16 = 7.00 and the standard

error associated with that difference is
√

4.312

22 + 4.642

22 = 1.3502.

*(g) Males−Females: Our estimated difference is 7.00 − 3.13 = 3.87 and the stan-
dard error associated with that difference is se =

√
0.97402 + 1.35022 = 1.665

[using se(θ̂1 − θ̂2) =
√

se(θ̂1)2 + se(θ̂2)2]. The resulting two-standard-error interval is
[0.54, 7.2]. Because the values in the interval for the difference in contrast effects
between males and females are all positive, the interval does support the idea
that the effect for males is bigger than it is for females. How much bigger? By
somewhere between 0.5 and 7.2 units on average.

(h) Some ideas are: everyone should see a photograph of themselves, samples should
be bigger, each person in a particular group should see the same photograph (not
clear from our discussion of the study).

(i) Several questions are of interest. For example, once a student has been tested it
might be an idea to show them a picture of the opposite type and see if they want
to change their score. It would interesting to know how each student is rated in
terms of attractiveness by their fellow students. This measure could be used as
a “blocking” variable (see Section 1.2).

17. (a) The three answers are: (i) Those in the “humane” group should score higher than
those in the “inhumane” group.
(ii) In the humane group, there should be a trend downwards from “typical”
to “atypical” (we would be more affected by what we saw if we thought it was
typical). In the inhumane group, the reverse should hold. (iii) We would expect
the “control” group reactions would fall in between those of the humane and
inhumane “no-information group”.

(b) We will react to sample means more than two standard errors apart as provid-
ing evidence that differences between the corresponding true means exist. When
sample means are less than 2 standard errors apart it is plausible that no true
differences exist. In such situations we will say that we have not demonstrated a
true difference.
We have not demonstrated a true difference between any of the three subgroups
shown the inhumane portrayal.
We have not demonstrated a true difference between any of the subgroups shown
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the humane portrayal.
We can conclude that the control group scored lower on average than the “typ-
ical” and “no-information” subgroups in the humane group and scored higher
than the typical subgroup of the inhumane group.
Under “no-information” conditions, those seeing the humane portrayal have been
demonstrated to score higher on average than those shown the inhumane por-
trayal.
Under typical conditions, those seeing the humane portrayal have been demon-
strated to score higher on average than those shown the inhumane portrayal.
Even when told that the behavior is atypical, those seeing the humane portrayal
have been demonstrated to score higher on average than those shown the inhu-
mane portrayal.
The data supports contention (i) in (a), fails to demonstrate (ii), and partly
supports (iii).

(c) Use larger samples with groups for each sex.
(d) Are there sex or age differences in the participants? What effect does the sex of

the guard have? etc.

*18. The two intervals are [θ̂i − 2se(θ̂i), θ̂i + 2se(θ̂i)], i = 1,2.
Suppose θ̂1 is less than θ̂2. Then, since the intervals do not overlap,
θ̂1 + 2se(θ̂1) < θ̂2 − 2se(θ̂2) and

θ̂2 − θ̂1 > 2[se(θ̂1) + se(θ̂2)] ≥ 2
√
se(θ̂1)2 + se(θ̂2)2 = 2 se(θ̂2 − θ̂1).

We have used the fact that a2 + b2 +2ab = (a+ b)2, i.e.,
√
a2 + b2 ≤ a+ b when a > 0,

b > 0.

*19. (a) Our estimate of the number visiting the doctor in Canada is t̂can = 0.1×27×106

(proportion times population size). Similarly, t̂usa = 0.2× 250× 106 and t̂mex =
0.6 × 90 × 106. Thus the total number visiting the doctor is 0.1 × 27 × 106 +
0.2× 250× 106 + 0.6× 90× 106.
The total population size is 27× 106 + 250× 106 + 90× 106 = 367 × 106. The
proportion visiting the doctor is thus

p̂ =
0.1× 27× 106 + 0.2× 250× 106 + 0.6× 90× 106

367× 106 .

This gives 106.70
367.00 = 0.297.

(b) Cancelling the 106 terms in the displayed equation above, we see that p̂ = 27
367 ×

0.1 + 250
367 × 0.2 + 90

367 × 0.6 which is of the form acanp̂can + ausap̂usa + amexp̂mex.

(c) sd(p̂) =
√

sd(acanp̂can)2 + sd(ausap̂usa)2 + sd(amexp̂mex)2

=
√
a2
cansd(p̂can)2 + a2

usasd(p̂usa)2 + a2
mexsd(p̂mex)2

Thus,
se(p̂) =

√
a2
canse(p̂can)2 + a2

usase(p̂usa)2 + a2
mexse(p̂mex)2

=
√
a2
can

p̂can(1−p̂can)
ncan

+ a2
usa

p̂usa(1−p̂usa)
nusa

a2
mex

p̂mex(1−p̂mex)
nmex

=
√

( 27
367 )2 × 0.1×0.9

1000 + ( 250
367 )2 × 0.2×0.8

1000 + ( 90
367 )2 × 0.6×0.4

1000

= 0.00944 .

*20. (a) I = 100× P̂ − 100× (1− P̂ ) = 100(2P̂ − 1) = 200P̂ − 100.
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(b) sd(I) = 200 sd(P̂ ).

(c) Solving I = 100(2P̂ − 1) we get P̂ = I
100 − 1

2 .

(i) When I = 40, p̂ = 40
200 + 1

2 = 1
5 + 1

2 = 7
10 .

(ii) se(I) = 200 se(p̂) = 200×
√

p̂(1−p̂)
1000 = 200×

√
0.7×0.3

1000 = 2.90%.

(d) It is a measure of “confidence excess”. It is positive when the majority of re-
spondents are confident (p̂ > 1

2 ) and negative when only a minority are confident
(p̂ < 1

2 ).

Note about simulation exercises: Simulation is a random process. Every time you do it,
you get different answers. The results your simulations produce for questions 21–23
will differ from ours in detail but should be fairly similar.

21. (a) Using the Chi-square distribution with 17 degrees of freedom, 1000 “carbohydrate
levels” were generated and a histogram of the data follows. It is similar in shape
to Fig. 6.1.1.

Frequency

0

10

15

20

carbohydrate level

100 200 300 400 500 600

carbohydrate mean

100 200 300 400 500 600

0

200

300

400

Frequency

5

100

(a) Histogram of carbohydrate level

(b) Histogram of carbohydrate means

(b) 100 samples of size 25 were generated and a histogram of the 100 sample means
is given above. It is plotted against the same horizontal scale as the plot for
individual observations above it. We note that the histogram of sample means
has a much smaller spread, showing that sample means are much less variable
than individual observations. The histogram of the individual observations is very
skewed while that of the sample means is much more bell shaped and Normal
looking (a consequence of the central limit effect).

(c) Another 1000 carbohydrate levels were generated using a Chi-square distribution
with 4 degrees of freedom. The histogram of the 1000 Chi-square random numbers
and the histogram of the 100 sample means from samples of size 25 are given
below. We observe the same sort of behavior as above.
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22. (a) 10 samples of 9 male heights were generated from a Normal(µ = 174cm, σ =
6.57cm) distribution giving the corresponding sample means:
173.6 174.5 174.1 174.2 170.7 172.8 175.9 176.2 176.8 171.6

A dot plot of these sample means is given below. Each point on the graph
represents the average height from a batch (sample) of 9 men. The smallest
average we got was 170.7; the biggest was 176.2.

Dotplot of 10 sample  means

176168 170 172 174

mean height (cm)

(b) A histogram of the 100 sample means follows.
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(b) 100 samples (n=9)

mean height (cm)

168 170 172 174 176 178 180 182

30

20

10

0

Frequency

Frequency

(c) 100 samples(n=25)

mean height (cm)

168 170 172 174 176 178 180 182

0

10

20

30

(c) 100 samples each of size 25 were generated and the histogram of the 100 sample
means is given above.

(d) The sample standard deviation of the set of 100 sample means of size 9 in (b)
was 2.222. From theory we would expect the standard deviation to be about
σ√
n

= 6.57√
9

= 2.19. The value we got was very close to this. The sample standard
deviation of the set of 100 sample means of size 25 in (b) was 1.287, which may
be compared with the theoretical standard deviation of σ√

n
= 6.57√

25
= 1.314.

(e) The histograms of the 100 sample standard deviations for each sample of size 9
in (b), and for each sample of size 25 in (c) are given below. Both histograms
appear to have similar centers. Ths histogram of standard deviations from the
samples of size 25 shows a considerably smaller spread, but it is still distinctly
skewed. (It is also strongly skewed for samples of size 1,000.)

(b)  Histogram of the  standard deviations (n=9)
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(c) Histogram of the standard deviations (n=25)

(f) For each of the 100 samples in (b) we calculated a two-standard error interval
(x± 2× se(x)) giving:
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(169.8037, 183.5743); (170.6262, 178.7426); (173.0295, 178.7387);

..... ..... ..... ..... ..... .....

(176.7898, 183.0196); (171.9569, 181.6141); (170.1725, 176.0769).

The proportion of our intervals that contained the true mean (174) was 91
100 =

0.91. The average width of our intervals was 9.119093.

(g) For the samples of size 25, the proportion of our intervals that contained the true
mean (174) was 95

100 = 0.95, and the average width of the intervals was 5.11662.

23. (a) For you to answer. Many people think that there should be no difference because
the true percentage is 50% in both cases. This exercise is intended to bring home
to you in a fairly concrete way that sample proportions from large samples are
less variable than proportions from small samples, and thus are less likely to give
a value as far away from the true proportion (0.5) as 0.7.

(b) By generating 10 Binomial(n = 1, p = 0.5) random numbers, a simulation of the
10-question test follows:

0 0 0 1 0 0 1 0 1 0

(c) A simulation of 15 people guessing answers to the 10-question test is given below.
Each column relates the results for one “person.”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 0 1 0 1 0 1 1 0 1
1 1 0 0 0 0 0 1 0 1 0 0 1 1 0
1 1 1 0 0 0 1 0 1 1 1 1 0 1 1
1 1 1 1 1 0 1 0 1 1 0 1 0 1 0
1 1 1 0 1 0 1 0 1 0 0 1 1 0 0
0 1 1 0 1 1 1 1 1 1 1 0 0 1 0
0 1 0 0 1 1 1 1 0 1 1 0 0 1 1
0 0 0 1 0 1 1 0 1 1 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 1 1 0 1
1 0 0 0 1 0 1 0 1 1 1 0 0 1 0

Adding the number of answers each person got right (i.e., counting the onesdown
a column, or equivalently, adding down the column) gives

6 7 6 4 6 4 8 5 6 8 4 5 4 6 4

Thus, our 1st person got 6 correct, our 2nd got 7 correct, our 3rd got 6 correct,
and so on.

(d) The four conditions required for the Binomial model to be valid are satisfied. By
generating 15 Binomial(n = 10, p = 0.5) random numbers, the number of correct
answers for 15 people randomly guessing in the 10-question test follows:

6 6 6 6 8 5 5 5 4 3 4 6 6 7 4

(e) Simulations of 100 people taking the 10-question test and the 100-question test
are displayed in the bar graphs below.
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Bar graph of number correct in 10-question test

Bar graph of number correct in 100-question test100-question test bar graph
rescaled to match the above

The proportion of people who got at least 7 of the 10 questions correct was
19
100 = 0.19 and the proportion of people who got at least 70 of the 100 questions
correct was 0

100 = 0. (The highest mark we observed was 64.)

(f) The theoretical result is sd(P̂ ) =
√

p(1−p)
n which is proportional to 1√

n
. This tells

us that the variability in the values of P̂ decreases as the sample size increases.
(g) For the people doing the 100-question test in (e) the 100 values of “proportion

correct” are as follows:

0.55 0.50 0.57 0.51 0.48 0.56 0.49 0.51 0.41 0.57 0.47 0.50 0.38 0.64 0.52

0.50 0.51 0.46 0.52 0.49 0.63 0.50 0.53 0.52 0.47 0.50 0.49 0.47 0.53 0.50

0.59 0.59 0.54 0.58 0.55 0.49 0.40 0.61 0.37 0.54 0.49 0.58 0.52 0.54 0.44

0.49 0.51 0.51 0.46 0.55 0.44 0.48 0.40 0.55 0.53 0.39 0.48 0.50 0.50 0.56

0.61 0.42 0.52 0.52 0.55 0.52 0.57 0.42 0.46 0.54 0.56 0.52 0.47 0.53 0.47

0.46 0.54 0.47 0.44 0.50 0.53 0.60 0.45 0.48 0.53 0.55 0.49 0.47 0.54 0.56

0.51 0.45 0.50 0.47 0.54 0.46 0.52 0.50 0.53 0.54

The standard deviation of these sample proportions is 0.053. This is very sim-
ilar to the theoretical standard deviation of P̂ when p = 0.5, namely sd(P̂ ) =√

0.5(1−0.5)
100 = 0.05.

(h) A histogram of the proportions from (g) is given on the left below. The histogram
is bell shaped but not completely symmetrical. [More interesting histograms are

given on the right. These show the decrease in variability in the P̂ values with the

larger sample size (number of questions). As the variability about the true value of 0.5

or 50% contracts, the proportion of values above 0.7 (70%) decreases.]
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0.7

Histogram of proportions correct for 100-question test

(i) Bar graphs of Binomial probabilities of the Binomial(n, p = 0.5) for n = 10,
n = 40, and n = 100 are given below. All are symmetrically bell shaped. We
note the decreasing spread as n increases. On the right we have the same thing
for p = 0.8. The bar graph is quite skewed when n = 10 but is symmetrical by
the time n = 100.

Binomial (n=10, p=0.5)

Binomial (n=100, p=0.5)

Binomial (n=40, p=0.5)

Binomial (n=10, p=0.8)

Binomial (n=40, p=0.8)

Binomial (n=100, p=0.8)
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Chapter 8

Exercises for Section 8.2

For all of these problems, we will be using the following formula x± tse(x) = x± t sX√
n

to
construct our confidence intervals. “Confidence interval” is frequently abbreviated to “CI.”
The confidence intervals in problems 1 and 2 can be also be generated automatically using
a package like Minitab or Excel (see Section 10.1.1). Of greatest importance is learning to
interpret the intervals in the context of the particular data set.

1. We have df = n − 1 = 5 so that the t multiplier for a 95% CI is t = 2.5706. The 6
observations have sample mean and standard deviation given by x = 5.3117 and s

X
=

0.2928 respectively. The resulting 95% CI is 5.3117±2.5706× 0.2928√
6

or approximately
[5.00, 5.62]. From this data, we can say with 95% confidence that the true mean
density of the earth is somewhere between 5.0 g/cm3 and 5.6 g/cm3.

2. (a) We have df = n − 1 = 9 so that the t multiplier for a 95% CI is t = 2.2622.
The 10 observations have sample mean and standard deviation given by x =
0.5041 and s

X
= 0.0160 respectively. The resulting 95% CI is 0.5041± 2.2622×

0.0160√
10

or approximately [0.493, 0.516]. With 95% confidence, the true nitrate ion
concentration is somewhere between 0.49µg/mL and 0.52µg/mL.

(b)

concentration

0.48 0.49 0.50 0.51 0.52 0.53

3. (a) (i) Here df = n − 1 = 61 so for a 95% CI, t = 1.9996. The resulting CI is
620.6 ± 1.9996 × 241.5√

62
or approximately [559, 682]. With 95% confidence,

the true or population mean testosterone level for nonsmokers is somewhere
between 559 ng/dL and 682 ng/dL.

(ii) Here df = n − 1 = 27 so for a 95% CI, t = 2.0518. The resulting CI is
795.1 ± 2.0518 × 305.3√

28
or approximately [677, 913]. With 95% confidence,

the true mean testosterone level for the 31–70 per day group is somewhere
between 677 ng/dL and 913 ng/dL.

(b) When df = 27, t = 1.7033 for a 90% CI and t = 2.7707 for a 99% CI. The
resulting CIs for the true mean testosterone level are:

(i) (90% CI) 795.1± 1.7033× 305.3√
28

, or [697, 893].

(ii) (99% CI) 795.1± 2.7707× 305.3√
28

, or [635, 955].

Exercises for Section 8.3

1. In Example 8.3.1, n = 200 and p̂ = 0.7. Our CI formula is p̂± zse(p̂) = p̂± z
√

p̂(1−p̂)
n .

The value of the multiplier z depends upon the confidence level.
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(a) (90% CI) 0.7± 1.6449×
√

0.7×0.3
200 , or [0.647, 0.753].

(b) (99% CI) 0.7± 2.5758×
√

0.7×0.3
200 , or [0.617, 0.783].

2. The 95% CI is 0.36 ± 1.96 ×
√

0.36×0.64
139 , or approximately [0.280, 0.440]. With 95%

confidence, the true (or population) proportion of Hispanic people who have been
pulled over on the roads by the police is somewhere between 28% and 44%.

Exercises for Section 8.4

We are using the confidence interval formula for a difference between two means from

independent samples, namely x1 − x2 ± t se(x1 − x2) = x1 − x2 ± t
√

s21
n1

+ s22
n2

.

1. (a) We will use df = min(5, 22) = 5. For a 95% CI the t multiplier is t = 2.5706.

Our 95% CI is 5.3117− 5.4835± 2.5706×
√

0.29282

6 + 0.19042

23 , or [−0.496, 0.152].

(b) The two-standard-error interval is 5.3117 − 5.4835 ± 2 ×
√

0.29282

6 + 0.19042

23 , or
[−0.424, 0.080], which is narrower.

(c) From either interval there is no evidence of a difference between the two true
means, as the interval contains zero.

2. We use df = min(30, 27) = 27. For a 95% CI, t = 2.0518.

Our 95% CI is 715.6 − 795.1 ± 2.0518 ×
√

2482

31 + 305.32

28 , or [−229, 70]. With 95%
confidence, the true mean testosterone level for 1–30 per day smokers falls somewhere
between smaller than that for 31–70 per day smokers by 229 ng/dL and larger by 70
ng/dL. This includes the possibility that there is no difference at all.

Exercises for Section 8.5.1 and 8.5.2

The confidence intervals asked for in these exercises are all for differences between two
proportions and are of the form p̂1 − p̂2 ± z se(p̂1 − p̂2). The formula used for the standard
error is as given in Table 8.5.5. We will not repeat these formulas here but simply indicate
whether we are dealing with a sampling situation (a), (b), or (c) as depicted in Fig. 8.5.1.

1. (a) Situation (c). (b) Situation (a). (c) Situation (a). (d) Situation (b). (e)
Situation (a).

2. (a) 0.51− 0.21± 1.96×
√

0.51+0.21−(0.51−0.21)2

500 , or [0.23, 0.37].
With 95% confidence, the population percentage of 15- to 17-year-olds who know
a student who sells illegal drugs is bigger than the percentage who know a teacher
who uses illegal drugs by somewhere between 23 and 37 percentage points.

(b) 0.51− 0.22± 1.96×
√

0.51×0.49
500 + 0.22×0.78

500 , or [0.23, 0.35].
With 95% confidence, the population percentage of 15- to 17-year-olds who know
a student who sells illegal drugs is bigger than the corresponding percentage for
12- to 14-year-olds by somewhere between 23 and 35 percentage points.

108



Instructor’s Manual Chapter 8

(c) 0.35− 0.23± 1.96×
√

0.35×0.65
822 + 0.23×0.77

500 , or [0.07, 0.17].
With 95% confidence, the population percentage of principals who think students
can use marijuana every weekend and still do well at school is bigger than the
corresponding percentage for 15- to 17-year-olds by somewhere between 7 and 17
percentage points.

(d) 0.21− 0.13± 1.96×
√

0.21+0.13−(0.21−0.13)2

500 , or [0.03, 0.13].
With 95% confidence, the population percentage of 12- to 14-year-olds who are
most likely to hang out with friends after school is bigger than the percentage
who go home and watch TV by somewhere between 3 and 13 percentage points.

(e) 0.22− 0.16± 1.96×
√

0.22×0.78
500 + 0.16×0.84

500 , or [0.01, 0.11].
With 95% confidence, the population percentage of 12- to 14-year-olds who are
most likely to hang out with friends after school is bigger than the corresponding
percentage of 15- to 17-year-olds by somewhere between 1 and 11 percentage
points.

3. (a) [Situation (b)] 0.59− 0.25± 1.96×
√

0.59+0.25−(0.59−0.25)2

1000 , or [0.29, 0.39].
With 95% confidence, the population percentage of New York voters who sup-
ported Clinton was bigger than the percentage who supported Dole by somewhere
between 29 and 39 percentage points.

(b) [Situation (a)] 0.33−0.29±1.96×
√

0.33×0.67
1000 + 0.29×0.71

1000 , or [−0.001, 0.08]. With
95% confidence, the population percentage of voters who supported Dole in New
Jersey was somewhere between being the same as the percentage in Connecticut
and being larger by 8 percentage points than in Connecticut.

(c) [Situation (a)] 0.28− 0.2± 1.96×
√

0.28×0.72
1000 + 0.2×0.8

1000 , or [0.04, 0.12].
With 95% confidence, the population percentage of Americans worried about
difficulties in getting health care was larger than the corresponding percentage
for Canadians by somewhere between 4 and 12 percentage points.

(d) [Situation (c)] 0.38− 0.32± 1.96×
√

0.38+0.32−(0.38−0.32)2

1000 , or [0.01, 0.11]. With
95% confidence, the population percentage of New Zealanders who think recent
changes have harmed the quality of health care was larger than the percent-
age who believe the system should be rebuilt by somewhere between 1 and 11
percentage points.

(e) The people in the UK, which spends least on health care, seem happiest with
their system.

Exercises for Section 8.6

1. (a) Take n ≥
(

1.96
.02

)2 × 0.5× 0.5 ≈ 2401.

(b) Take n ≥
(

1.96
.02

)2 × 0.15× 0.85 ≈ 1225.

(c) Take n ≥
(

1.96
.02

)2 × 0.85× 0.15 ≈ 1225.

2. (a) Take n ≥
(

1.96×.07559
.025

)2 ≈ 35.
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(b) Take n ≥
(

1.96×.44049
.025

)2 ≈ 1193.
The difference is so big because thiol measurements are much more variable in the
rheumatoid population than they are in the normal population so substantially
more people must be sampled from the rheumatoid population to estimate the
population mean to the same level of precision.

Review Exercises 8

1. (a)

% nickel

3.24 3.26 3.28 3.30 3.32 3.34 3.36

3.25

No, the dot plot looks well behaved.

(b) x = 3.289, sX = 0.04701

(c) With df = n− 1 = 9, t = 2.262 for a 95% CI. The resulting 95% CI for the true
percent nickel content is 3.289± 2.262× 0.04701√

10
, or [3.26%, 3.32%]. Yes, there is

evidence that this batch differs from previous batches as the usual mean nickel
content for previous batches (3.25%) lies outside the 95% confidence interval for
the true mean nickel content of this batch.

(d) Added to the plot in (a) above.

The interval is now 3.289± 2.022691× 0.04701064√
40

, or [3.27, 3.30].

If the multiplier did not change, the width of the confidence interval would halve.
The multiplier also gets slightly smaller with the increase in df , so with more
significant figures, you will see that the width of the new interval for n = 40 is
slightly less than half the width of the interval for n = 10.

*(e) Take n ≥
(

1.96×0.04701064
.015

)2 ≈ 38

2. (a) The more enthusiastic people show higher scores, on average, on all scales. Scores
for non-volunteers look less variable on “support”.

(b) In each case we use the following formula for a 95% CI for a difference between
two true means µ1 − µ2, namely,

x1 − x2 ± t se(x1 − x2) = x1 − x2 ± t
√
s2

1

n1
+
s2

2

n2
.

We use df = min(n1 − 1, n2 − 1) to obtain the multiplier t for the 95% CI.

(i) df = 27, 95% CI = 3.82− 3.32± 2.0518×
√

0.7292

38 + 0.7232

28 , or [0.13, 0.87].
With 95% confidence, the true mean for enthusiastic volunteers is larger than
that for reluctant volunteers by somewhere between 0.13 and 0.87.
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(ii) df = 12, 95% CI = 3.82− 3.15± 2.1788×
√

0.7292

38 + 0.6892

13 , or [0.18, 1.16].
With 95% confidence, the true mean for enthusiastic volunteers is larger than
that for nonvolunteers by somewhere between 0.18 and 1.16.

(iii) df = 12, 95% CI = 3.32− 3.15± 2.1788×
√

0.7232

28 + 0.6892

13 , or [−0.34, 0.68].
With 95% confidence, the true mean for reluctant volunteers could be any-
where between being smaller than that for nonvolunteers by 0.34 and larger
by 0.68. This includes the possibility that there is no difference at all between
the true means.

(c) We have evidence that the enthusiastic volunteers have the higher average scores
than nonvolunteers for all three characteristics (goal emphasis, support and team
building). For goal emphasis, we have evidence that enthusiastic volunteers score
higher on average than reluctant volunteers, but could not demonstrate a dif-
ference between reluctant volunteers and nonvolunteers. For both support and
team building, however, we have evidence that reluctant volunteers score higher
on average than nonvolunteers, but could not demonstrate a difference between
enthusiastic volunteers and reluctant volunteers. We have thus been able to con-
firm most, but not all, of what we observed in (a).

(d) The group studied were a specific group of people in a municipal department
and were therefore not necessarily representative of people in general. We need
to investigate whether these trends carry over to other types of people. Also
the tendency to return a questionnaire may not be a very good indicator of the
tendency to volunteer. It would be good to design an experiment where people
are asked directly to volunteer to take part in some activity. We would also be
interested in whether there were be sex or cultural differences in the relationship
between voluntarism and goal emphasis etc.

3. (a) A single piece of paper may look like it would take less time to answer. If there
was a difference, we would expect the single sheet version would have a higher
response rate.

(b) We have independent samples (situation (a) in Fig. 8.5.1) so we use the corre-
sponding formula in Table 8.5.5 for se(p̂1 − p̂2). We have p̂1 = 0.36, p̂2 = 0.3,

n1 = 220, and n2 = 220, giving se(p̂1 − p̂2) =
√

0.36×0.64
220 + 0.30×0.70

220 = 0.044742.

(90% CI) 0.36 − 0.30 ± 1.6449 × 0.044742, or [−0.014, 0.13]. With 90% con-
fidence, the true response rate for the one-sheet version is somewhere between
being 1.4 percentage points lower than for the two-sheet version and 13 percent-
age points higher.

(95% CI) 0.36−0.30 ± 1.96×0.044742, or [−0.03, 0.15]. When we change to a
95% CI our interval becomes wider (less precise). With 90% confidence, the true
response rate for the one-sheet version is somewhere between being 3 percentage
points lower than for the two-sheet version and 15 percentage points higher.

(c) Since both intervals contain zero, the change in printing format may make no
difference to the response rate. We would be inclined to use the two-sided version
in accordance with our intuition and the slight suggestion of an increased response
rate given by the data. We note that both response rates were quite low.
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4. All confidence intervals asked for in this problem are confidence intervals for a differ-
ence in proportions from independent samples, i.e., sampling situation (a) of Fig. 8.5.1,
so we use the corresponding formula in Table 8.5.5 for se(p̂1 − p̂2). All are 95% CIs,
so we use z = 1.96 as our multiplier.

(a) Our intervals are for p1st − p33rd, the difference between the response rate when
the question is asked first and when it is asked 33rd. We do this for various for
various subgroups.
(i) All respondents:

0.804 − 0.887 ± 1.96 ×
√

0.804×0.196
337 + 0.887×0.113

328 , or [−0.14, −0.03]. With
95% confidence, somewhere between 3% and 14% more people expressed an
opinion when the question was asked 33rd than when it was 1st.

(ii) Less Educated:

0.795 − 0.916 ± 1.96 ×
√

0.795×0.205
224 + 0.916×0.084

214 , or [−0.19, −0.06]. With
95% confidence, somewhere between 6% and 19% more people expressed an
opinion when the question was asked 33rd than when it was 1st.

(iii) More Educated:

0.842 − 0.832 ± 1.96 ×
√

0.842×0.158
101 + 0.832×0.168

113 , or [−0.09, 0.11]. For the
subgroup consisting of the more educated people, because zero is in the
interval, we cannot say in which direction the true difference lies or whether
one exists.

(b) Our 95% CI for the true difference in approval ratings among those who would

respond is 0.528 − 0.515 ± 1.96 ×
√

0.528×0.472
271 + 0.515×0.485

291 , or [−0.07, 0.10].
Although zero is in the interval so that it is quite plausible that ordering makes
no difference to approval ratings, the data does not demonstrate that there is
no difference. The data is consistent with true differences of up to 7% in one
direction or 10% in the other.

(c) In the study, the intervening questions did not directly relate to the actions of
the President as they did in the Johnson polls.

*5. (a) Take n ≥
(

2.5758
.04

)2 × 0.5× 0.5 ≈ 1037.

(b) Take n ≥
(

2.5758
.04

)2 × 0.4× 0.6 ≈ 995 (which is only slightly smaller).

(c) Take n ≥
(

2.5758
.04

)2 × 0.6× 0.4 ≈ 955 (which is the same as for (b)).
(d) Practical questions including how to sample students from the many schools in

a city. Definitional questions such as how to handle students whose parents were
never legally married but have now split. (Whether to include them depends on
the purpose of the survey. Are you interested in legalities or whether the students
are living with both parents?)

6. (a) We have p̂TM = 0.719 and n = 362. Assuming a random sample, our 90% CI

for pTM is = 0.719± 1.644854×
√

0.719×0.281
362 , or [0.68, 0.76]. If we believed this

interval it would be telling us that the true 5-year disease-free rate under the TM
treatment at this time was somewhere between 68% and 76%. The considerations
discussed under part (b) of the question, show that in fact the uncertainty about
the true value is greater than this interval would suggest.
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(b) Here, p̂TM = 0.719, p̂SM = 0.681, nTM = 362 and nSM = 390. We have indepen-
dent samples (situation (a) in Fig. 8.5.1) so, assuming ordinary random samples,

our 95% CI for pTM − pSM is 0.719− 0.681± 1.96×
√

0.719×0.281
362 + 0.681×0.319

390 ,
or [−0.03, 0.10]. This would tell us that the true 5-year disease-free rate under
the TM treatment could be anywhere between being lower than that for the SM
treatment by 3% and higher by 10%.

(c) In (b), we have worked with calculated standard errors of the form se(p̂) =√
p̂(1− p̂)/n for each of our sample proportions. We have now been told that

these are not appropriate given the way the proportions were calculated. Each
comparison we make still compares proportions from independent groups of
women so we can use se(p̂1 − p̂2) =

√
se(p̂1)2 + se(p̂2)2. However, we will now

substitute the real se(p̂) values given in the question into this equation. The
resulting 95% CIs are as follows.
For pSM − pTM : 0.681− 0.719± 1.96×

√
0.0352 + 0.0352, or [−0.135, 0.059].

For pSM+R − pTM : 0.814− 0.719± 1.96×
√

0.0292 + 0.0352, or [0.006, 0.184]
For pSM+R − pSM : 0.814− 0.681± 1.96×

√
0.0292 + 0.0352, or [0.044, 0.222].

(d) No difference has been demonstrated between TM and SM (zero is within the
interval), but SM + R shows significant improvement over both TM and SM.

7. (a) We would plot the data using box plots to compare groups (as these groups are
quite large). We would also look at stem-and-leaf plots or histograms to look at
distributional shape.

(b) We use df = min(n1 − 1, n2 − 1) = 89 in determining the size of the multiplier t.
The only difference between the 95% confidence interval and the two-standard-
error interval we calculated in problem 15(b) in Review Exercises 7 is that we
are now using t = 1.9870 standard errors rather than 2 standard errors. Not sur-
prisingly, we get virtually identical intervals. Our 95% CI for the true difference

in means is 103.0 − 92.8 ± 1.9870 ×
√

17.392

210 + 15.182

90 , or [6.2, 14.2]. Breast-fed
babies have IQs that are higher on average than bottle-fed babies by somewhere
between 6 and 14 points.

*(c) Take n ≥ ( 1.96×17.39
1 )2 ≈ 1162.

(d) The babies were all pre-term and very small, and only from special care units in
several areas in England. The results may be special to this population.

(e) It is an observational study in which mothers chose whether to breast feed. The
study does not demonstrate that the effect is causal.

(f) The CI would change to 103.0−92.8±2.144787×
√

17.392

210 + 15.182

15 , or [1.4, 19.0].
The interval has become more than twice as wide.

(g) This problem is very similar to Example 6.4.2. We want pr(X < Y ) where
X ∼ Normal(µX = 103.0, σX = 17.39) and Y ∼ Normal(µY = 92.8, σY = 15.18).
pr(X < Y ) = pr(X − Y < 0) = pr(W < 0). Here W = X − Y has mean µW =
103.0 − 92.8 = 10.2 and standard deviation σW =

√
17.392 + 15.182 = 23.0834.

Using these values, pr(W < 0) = 0.3293. For any two randomly selected babies,
there is approximately 1 chance in 3 that the bottle-fed baby will have a higher IQ.
The confidence interval is only talking about the difference between the means

113



Instructor’s Manual Chapter 8

and says nothing about any other aspect of the distribution. In fact, there is
substantial overlap between the IQ distributions for both groups.

8. (a) (i) The overall sample proportion with TB is p̂ = 556+36
984+90 ≈ 0.55.

(ii) The sample proportion of intravenous drug users with TB is p̂Int. = 361
629 ≈

0.57.
(iii) The sample proportion of “Whites” with TB is p̂W = 496

886 ≈ 0.56.
The sample proportion of “Gypsies” with TB is p̂G = 74

152 ≈ 0.49.
The sample proportion of “Others” with TB is p̂O = 22

36 ≈ 0.61.
We see that the “Other” group had the highest sample rate of TB.

(b) We are comparing proportions from independent samples (situation (a) in Fig. 8.5.1.
We have p̂male = 556

984 = 0.56504 ≈ 0.57, p̂female = 36
90 = 0.4. Our 95% CI for the

true difference is 0.56504− 0.4± 1.96×
√

0.56504×0.43496
984 + 0.4×0.6

90 , or [0.06,0.27].
With 95% confidence, the population percentage of males with TB is higher than
that for females by between 6 and 27 percentage points.

(c) We are again comparing proportions from independent samples (situation (a)
in Fig. 8.5.1). We have p̂HIV = 186

294 = 0.63265 ≈ 0.57, p̂NoHIV = 406
780 =

0.5205128. Our 95% CI for the true difference is 0.63265 − 0.52051 ± 1.96 ×√
0.63265×0.36735

294 + 0.52051×0.47948
780 , or [0.05, 0.18]. With 95% confidence, the pop-

ulation percentage of prisoners with HIV who have TB is higher than that for
prisoners without TB by between 5 and 18 percentage points.

(d) We are again comparing proportions from independent samples (situation (a) in
Fig. 8.5.1). We have p̂W = 496

886 = 0.55982 and p̂G = 74
152 = 0.48684. Our 95% CI

for the true difference is 0.55982−0.48684±1.96
√

0.55982×0.44018
886 + 0.48684×0.51316

152 ,
or [−0.01, 0.16]. The 90% CI (i.e., using z = 1.6449 standard errors) is
[0.001, 0.145]. At the 90% confidence level, the difference is positive thus sug-
gesting an ethnic difference, but the 95% interval contains zero. We therefore
have some evidence confirming a link, but it is not particularly strong.

(e) We need to be able to compare the proportions of males and females with TB
among HIV-positive prisoners, and also among HIV-negative prisoners.

(f) The study is on prisoners – a very special subset of the population in a very
special environment in which TB contraction patterns may be different from in
society at large.

(g) We had not intended that calculations be done here. We just wanted to give
some practice with classifying sampling situations.

(i) Situation (c). Since the total number of prisoners with TB in the sample
is 592, the sample proportions to be compared are p̂1 = 361/592 and p̂2 =
186/592 using n = 592.

(ii) Situation (b). The sample proportions to be compared are p̂1 = 74/592 and
p̂2 = 496/592 using n = 592.

(iii) Situation (a). This is the same comparison as in (d).
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9. (a) The data suggests that ex-smokers have healthier eating patterns on average than
smokers, both when we look within manual workers and when we look within non-
manual workers. Similarly, non-manual workers seem to have healthier eating
patterns on average than manual workers, both when we look within smokers
and within ex-smokers.

(b) All confidence intervals calculated here are 95% CIs for differences between pro-
portions from independent samples (situation (a) in Fig. 8.5.1). All are calculated

using p̂1 − p̂2 ± 1.96 se(p̂1 − p̂2) where se(p̂1 − p̂2) =
√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

.

Using only non-manual workers, the following are 95% confidence intervals for dif-
ferences in true proportions between ex-smokers who consume the item (e.g., break-
fast) and smokers who consume the item. The sample sizes are always n1 = 517
and n2 = 404.
Breakfast : p̂1 = 0.824, p̂2 = 0.629, and the CI is [0.14, 0.25].
Brown bread : p̂1 = 0.536, p̂2 = 0.345, and the CI is [0.12, 0.25].
Fresh Fruit : p̂1 = 0.776, p̂2 = 0.594, and the CI is [0.12, 0.24].
Fried food : p̂1 = 0.162, p̂2 = 0.282, and the CI is [−0.17, −0.07].
We have clearly demonstrated that the ex-smokers do better than the non-
smokers when it comes to both having breakfast and having a healthy breakfast.
For example, with 95% confidence, the true percentage of exsmokers consuming
breakfast is larger than that for smokers by somewhere between 14 and 25 per-
centage points. The other intervals are all read similarly. The only exception is
the last interval which tells us that, with 95% confidence, the true percentage of
exsmokers consuming fried food is smaller than that for smokers by somewhere
between 7 and 17 percentage points.

10. (a) The percentages are listed as follows:

Make 91–93 trouble-free % 94–96 trouble-free %
Honda 53.9 54.1
Mazda 51.8 58.2
Mitsubishi 45.1 51.4
Nissan 42.3 51.9
Subaru 50.7 62.9
Toyota 52.0 58.6

For the period 1991–93, Honda appears the most reliable and Nissan the least
reliable. For the period 1994–96, Subaru appears the most reliable and Mitsubishi
the least reliable.

(b) For all other years except 1996, our data concerns problems in the last year. None
of the 1996 cars had been in use for a full year. Also, as cars age they tend to
become less reliable. Very new cars often have teething problems. Comparisons
between makes where the age-distribution of cars in use is different may be biased.

(c) Using the formula p̂± 1.96 se(p̂) where se(p̂) =
√

p̂(1−p̂)
n we get the following.

Toyota: n = 408, p̂ = 212/408 and the 95% CI is [0.47, 0.57]. With 95% con-
fidence the population proportion of 1991–1993 Toyota owners who experienced
“trouble free” motoring is somewhere between 47% and 57%. Similarly, we have:
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Honda: n = 152, p̂ = 82/152, and the 95% CI is [0.46, 0.62];
Mazda: n = 85, p̂ = 44/85, and the 95% CI is [0.41, 0.62];
Mitsubishi : n = 244, p̂ = 110/244, and the 95% CI is [0.39, 0.51];
Nissan: n = 208, p̂ = 88/208, and the 95% CI is [0.36, 0.49];
Subaru: n = 73, p̂ = 37/73, and the 95% CI is [0.39, 0.62].

All confidence intervals calculated in (d) and (e) are 95% CIs for differences between pro-
portions from independent samples (situation (a) in Fig. 8.5.1). All are calculated using

p̂1 − p̂2 ± 1.96 se(p̂1 − p̂2) where se(p̂1 − p̂2) =
√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

.

(d) We want to estimate, for the 91–93 models, pToy − pNis denoting the difference
between the true proportions of Toyotas and Nissans that were trouble-free. We
have nToy = 408, p̂Toy = 212/408, nNis = 208, and p̂Nis = 88/208. The 95%
CI for the true difference is approximately [0.014, 0.18]. The true percentage of
Toyotas that were trouble-free is greater than that for Nissans by between 1.4
and 18 percentage points.

(e) The sample proportion of 94–96 Nissans that were trouble free was p̂Nis.94 =
80/154 with nNis.94 = 154. The sample proportion of 91–93 Nissans that were
trouble free was p̂Nis.91 = 88/208 with nNis.91 = 208. The 95% CI for the differ-
ence in true proportions is approximately [−0.007, 0.20]. With 95% confidence,
the percentage of 94–96 Nissans that are trouble free is somewhere between essen-
tially the same as for 91–93’s and 20 percentage points higher than for 91–93’s.
Confidence intervals making the equivalent comparisons for the other makes (ex-
pressed in percentage terms) are : Honda- [−11%, 11%]; Mazda- [−9%, 22%];
Mitsu.- [−3%, 16%]; Sub.- [−8%, 32%]; Toy.- [−2%, 15%]. Since all these inter-
vals contain zero, we cannot demonstrate that the older cars are less reliable.

(f) Changes in design and technology. Also older cars might be treated with less
respect than new cars.

(g) If there was an aging effect, there would be a bias in favor of Subaru, i.e., towards
making Subaru look better.

(h) Cars under the same name in different markets are not necessarily identical cars.
They may contain different parts manufactured using different processes. Differ-
ing climatic conditions may change what cars are more reliable (some may be
more affected by extremes of heat or cold) as may driving habits. We would need
to know about some of these things.

(i) p̂Hon.94 = 148
799 = 0.1852315. A 95% CI for Honda’s market share is approximately

[0.158, 0.212] telling us that Honda’s market share was somewhere between about
16% and 21%. Equivalent 95% CIs for the market shares of other companies are
(expressed as percentages): Mazda- [7.8%, 12.0%]; Mitsu.- [18.8%, 24.5%]; Nis.
- [16.5%, 22.0%]; Sub.- [3.0%, 5.8%]; Toy. - [23.2%, 29.3%].

(j) This comparison is of the form situation (b) shown in Fig. 8.5.1. The sample size is
n = 799. The sample market share proportions are (Toyota) p̂Toy.94 = 210/799 ≈
0.0.2628 and (Honda) p̂Hon.94 = 148/799 ≈ 0.1852. The resulting 95$ CI is

0.2628 − 0.1852 ± 1.96 ×
√

0.2628+0.1852−(0.2628−0.1852)2

799 , or [0.031, 0.124]. With
95% confidence, Toyota’s market share was greater than Honda’s by somewhere
between about 3% and 12%.
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(k) We are comparing proportions from independent samples (situation (a) in Fig. 8.5.1)
– see formulas just prior to the answer to part (d). For 94–96, n94 = 799 and
our estimate of Honda’s share from the sample is p̂Hon.94 = 148

799 ≈ 0.1852.
For 91–93, n91 = 1150 and our estimate of Honda’s share from the sample is
p̂Hon.94 = 152

1170 ≈ 0.1299. Our 95% CI for the true difference is 0.1852− 0.1299±
1.96×

√
0.1852×0.8148

799 + 0.1299×0.8701
1150 , or [0.022, 0.089]. With 95% confidence, the

increase in market share for Honda was somewhere between 2.2 and 8.9 percentage
points. Equivalent 95% CIs for the changes in the market shares of other compa-
nies are (expressed as percentages): Mazda- [0%, 5.2%]; Mitsu.- [−2.9%, 4.5%];
Nis.- [−2.0%, 5.0%]; Sub. -[−3.9%, 0.1%]; Toy.-[−12.7%, −4.5%].

(l) You might think so from the figures, but in fact a market for used cars imported
direct from Japan opened up, increasing the numbers of older used cars.

11. (a) 95% CI: 0.48 ± 1.96 ×
√

0.48×0.52
2700 , or [0.461, 0.500]. With 95% confidence, the

true percentage of Independents who voted Republican was somewhere between
46% and 50%.

(b) We are comparing proportions from independent samples (situation (a) in Fig. 8.5.1).

Our 95% CI for p94 − p98 is 0.55− 0.48± 1.96×
√

0.55×0.45
2700 + 0.48×0.52

2700 , or
[0.043, 0.097]. With 95% confidence, the true percentage of Independents who
voted Republican in 1998 was smaller than that in 1994 by somewhere between
about 4 and 10 percentage points.

(c) We are comparing proportions from independent samples (situation (a) in Fig. 8.5.1).
Our 95% CI for p4year − ppostgrad is

0.53−0.45±1.96×
√

0.53×0.47
2700 + 0.45×0.55

1800 , or [0.050, 0.110]. With 95% confidence,
the true percentage of 4-year college graduates who voted Republican was larger
than that for people who have done postgraduate study by somewhere between
about 5 and 11 percentage points.

(d) 95% CIs for population proportions of ethnic group voting Republican:
White [0.539, 0.561]; Black [0.09, 0.13]; Hispanic [0.31, 0.39]; Asian [0.32, 0.52].
The 95% CI for difference between population proportions of Asians and Hispan-
ics voting Republican (situation (a) comparison):

0.42− 0.35± 1.96×
√

0.42×0.58
100 + 0.35×0.65

500 , or [−0.04, 0.18].

12. (a) Of all the issues discussed, money problems stand out as the most common causes
of stress. Of the groups, single parents seem most likely to be stressed by these
issues, most notably by money problems, living relationships and relationships
with partners (presumably residual problems from failed relationships).
Unhealthy life styles: Binge drinking seems less prevalent than the other two
types – most markedly so for those living with a partner and child. Smoking and
unhealthy eating practices seem most common among single parents, and binge
drinking among those in shared accommodation.
There appears to be a tendency for those living with parents to be in lower weight
categories and those with partner and child to be in higher weight categories.
(This may be partially explainable in terms of age).
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(b) Differences between groups might be due to to age differences rather than living-
status differences.

(c) The study also asked about stresses stemming from work, study, health, and
other types of relationships. Other possibilities include major life changes such
as bereavements.

(d) 95% CI: 0.173 ± 1.96 ×
√

0.173×0.827
3125 , or [0.160, 0.186]. With 95% confidence,

among young women living in shared accommodation, the true percentage who
were stressed by their living arrangements lies somewhere between about 16 and
19%.

(e) We are comparing proportions using independent samples (situation (a) in
Fig. 8.5.1). A 95% CI for the difference in proportions stressed by relationships
with boyfriends between those living alone and those in shared accommodation

palone − pshare is given by 0.145 − 0.116 ± 1.96 ×
√

0.145×0.855
875 + 0.116×0.884

3125 , or
[0.003, 0.055]. With 95% confidence, the true percentage stressed by boyfriends
among those living alone lies somewhere between being very similar to the cor-
responding percentage among those living in shared accommodation and being
about 6 percentage points greater.

(f) This is a situation (c) comparison in Fig. 8.5.1. We are only considering people
living alone of which we have n = 875 in our sample. A conservative 95% CI
for the difference between the true (or population) proportion stressed by money
problems and the proportion stressed by living arrangements pmoney − pliving is
given by

0.298 − 0.162 ± 1.96 ×
√

0.298+0.162−(0.298−0.162)2

875 , or [0.09, 0.18]. With 95%
confidence, the true percentage stressed by money problems is greater than the
percentage stressed by living arrangements by somewhere between 9 and 18 per-
centage points.

(g) This is a situation (b) comparison in Fig. 8.5.1. We are only considering people
living with a partner and child, of which we have n = 915 in our sample. A 95%
CI for the difference between the true proportion in the underweight category
and the true proportion in the overweight category puw − pow is given by

0.253− 0.216± 1.96×
√

0.253+0.216−(0.253−0.216)2

915 , or [−0.007, 0.081]. With 95%
confidence, the true percentage in the underweight category lies somewhere be-
tween being very similar to the percentage in the overweight category and being
larger by about 8 percentage points.

13. The actual margin of error associated with p̂ = 0.03 is 1.96×
√

.03×.97
1000 ≈ 0.0106, which

is very close to 1%.

14. (a) When df = n − 1 = 19, for a 95% CI we use t = 2.093. The resulting 95% CI
is given by x ± tse(x) = x ± t sX√

n
= 16.98 ± 2.093 × 2.85√

20
, or [15.6, 18.3]. With

95% confidence, the true mean rating for females under control conditions lies
somewhere between 15.6 and 18.3.

(b) We will use df = min(n1−1, n2−1) = 21, so for a 95% CI we use t = 2.080. The

resulting 95% CI is given by x1 − x2 ± tse(x1 − x2) = x± t
√

s21
n1

+ s22
n2

=
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17.18 − 14.16 ± 2.080 ×
√

4.722

23 + 4.642

22 , or [0.1, 5.9]. With 95% confidence, the
true mean rating for males under control conditions is larger than it is under
negative-contrast conditions by somewhere between 0.1 and 5.9.

(c) Computation is as for (b). The resulting 95% CI is 21.16 − 17.18 ± 2.079614 ×√
4.312

22 + 4.722

23 , or [1.2, 6.8]. With 95% confidence, the true mean rating for males
under positive-contrast conditions is larger than it is under control conditions by
somewhere between 1.2 and 6.8.

15. (a) When df = n − 1 = 38, for a 95% CI we use t = 2.024. The resulting 95% CI
is (using the formula in answer to 14(a)): 10.97 ± 2.024 × 2.67√

39
, or [10.1, 11.8].

With 95% confidence the true mean score under control conditions lies somewhere
between 0.1 and 11.8.

(b) We will use df = min(n1 − 1, n2 − 1) = 17, so for a 95% CI we use t = 2.110.
The resulting 95% CI is (using the formula in answer to 14(b)): 13.28− 10.97±
2.110 ×

√
1.92

18 + 2.672

39 , or [1.0, 3.6]. With 95% confidence, the true mean score
under “humane/no info.” conditions is larger than it is under control conditions
by somewhere between about 1 and 6.

(c) Interval set up is as for (b). The resulting 95% CI is: 10.97 − 10.44 ± 2.110 ×√
2.672

39 + 2.432

18 , or [−0.98, 2.04]. As zero lies in this interval we cannot tell
whether there is a true difference or in what direction such a difference lies.
What we can say with 95% confidence is that the true mean score under control
conditions lies somewhere between being smaller than it is under “inhumane/no
info.” conditions by approximately 1 and and being larger by 2.04.

*16. (a) Since the true proportion is p = M
N we have N = M

p . We can estimate N by

substituting an estimate p̂ of obtained p from our sample. This gives N̂ = M

p̂
.

For our sample n = 321 and p̂ = 89
321 = 0.2772586. Thus N̂ = 600

0.2772586 , or 2164.

(b) A 95% CI for the true value of p is given by 0.27726 ± 1.96 ×
√

0.27726×0.72274
321 ,

or [0.22829, 0.32623].

(c) Recall that N = M
p . We have with 95% confidence that p ≥ 0.2282 and p ≤

0.32623. If p ≥ 0.22829 then N ≤ 600
0.22829 ≈ 2628, and if p ≤ 0.32623 then

N ≥ 600
0.32623 ≈ 1839. Our 95% confidence interval for N is therefore [1839, 2628].

With 95% confidence, the population size lies somewhere between 1839 ants and
2628 ants.

*17 (a) For independent samples (situation (a) in Fig.8.5.1), the margin of error is

z standard errors or z

√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2
. When n1 = n2 = n, this be-

comes z√
n

√
p̂1(1− p̂1) + p̂2(1− p̂2). Solving z

n

√
p̂1(1− p̂1) + p̂2(1− p̂2) ≤ w

for n gives the desired expression.

(b) Since taking p̂ = 0.5 maximizes p̂(1− p̂), we should use p̂1 = 0.5 and p̂2 = 0.5.

(c) Using these values we get n ≥
(
z
w

)2 × 0.5 = 1
2

(
z
w

)2.
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(d) Arguing as in (a), we get get n ≥
(
z
w

)2× [p̂1 + p̂2− (p̂1− p̂2)2]. The biggest value
this can take also happens when p̂1 = 0.5, and p̂2 = 0.5 giving n ≥

(
z
w

)2.
*18 (a) The margin of error associated with p̂ is z

√
p̂(1− p̂)/n.

(b) The margin of error for the difference between proportions from independent

samples is z
√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

. When n1 = n2 = n and p̂1 = p̂2 = 0.5, this
reduces to z/

√
2n.

(c) By substituting p̂ = 0.5 into (a), the margin of error for a single proportion
is z/

√
4n. The ratio (difference/single) is [z/

√
2n]/[z/

√
4n] =

√
2 ≈ 1.4. The

margin of error for a difference should be approximately 40% larger than that for
a single proportion.

(d) The margin or error for situation (b) is z
√

p̂1+p̂2−(p̂1−p̂2)2

n . This reduces to z/
√
n

when p̂1 = p̂2 = 0.5. The ratio (difference/single) is [z/
√
n]/[z/

√
4n] =

√
4 = 2.

The margin of error for a situation (b) difference should be approximately twice
as large as that for a single proportion.

19. (a) 100 samples of 9 “male heights” following a N(µ = 174cm, σ = 6.57cm) distri-
bution were generated. For each sample, a 95% confidence interval for the true
mean was obtained using the formula x± t se(x). Here n = 9 so that df = 8 and
t = 2.306. The 100 95% confidence intervals were:

(172.3962, 178.6724); (174.4476, 183.1760); (173.8045, 178.3554);

..... ..... ..... ..... ..... .....

(169.0617,176.4371); (169.2078, 177.2485); (170.8897, 182.4987).

The proportion of our intervals that contain the true mean 174 is 96
100 = 0.96.

The average width of the 100 intervals is 9.66.

(b) This time 100 samples of 25 male heights were generated and, for each sample, a
95% confidence interval for the true mean was obtained. We now have df = 24
and t = 2.064. The proportion of the intervals that contain the true mean 174
is 94

100 = 0.94. The average width of the 100 intervals is 5.39, which is 4.27 less
than than the average width of the intervals from (a).
[We expect the intervals to have approximately a 95% coverage no matter what
the sample size is. The length of the intervals, however, is proportional to 1√

n

(apart from a minor df effect), so the intervals get shorter as n increases. (See
Fig. 8.1.4).]

20. (a) The situation is just like tossing a biased coinM times and counting the number of
heads. Each “toss” consists of taking a sample and calculating an interval. Each
results in one of only two possible outcomes (“heads” corresponds to covering the
true value, “tails” corresponds to not covering the true value). The probability of
getting a covering interval is always the same, namely 0.95. Independence comes
from taking independent samples. Thus all the assumptions of the Binomial(n =
M,p = 0.95) distribution hold.

(b) Using the Binomial(n = 100, p = 0.95) distribution, pr(91 ≤ X ≤ 98) = pr(X ≤
98) − pr(X ≤ 90) = 0.9347. [Recall that with discrete distributions, whether or not end

points are included in an interval is critically important.]
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(c) Using the Binomial(n = 1000, p = 0.95) distribution, pr(935 ≤ X ≤ 965) =
pr(X ≤ 965)−pr(X ≤ 934) = 0.9758. [Note that with M = 1000 we have an even larger

probability of falling into a substantially narrower interval than we did in (a) with M = 100.]

*(d) The margin of error is 1.96×
√

0.95×0.5
n . If we want 1.96×

√
0.95×0.5

n ≤ 0.01, we

need to take (solving for n) n ≥
(

1.96
0.01

)2 × 0.95× 0.5 = 1824.76. If we wanted to
run a simulation at this level of precision we would use M = 2000.

21. (a) A histogram of 500 observations from a Chi-square distribution with 4 degrees
of freedom is shown below.

F
re

qu
en

cy

0 5 10 15 20

0
50

10
0

15
0

20
0

25
0

Histogram of the Chi-square (4) distribution
                            (n=500)

(b) 100 samples of size 9 were generated. For each sample a 95% confidence interval
was obtained using the formula x± t se(x). Here, df = n− 1 = 8 and t = 2.306.
The one hundred 95% confidence intervals were:

(1.5800846, 7.845032); (1.9556367, 6.000979); (1.6196485, 5.745535);

...... ..... ..... ..... ..... .....

(2.0805119, 5.502391); (1.8812885, 4.266043); (1.2595665, 3.630293).

The proportion of our intervals that contained the true mean (4) was 88
100 = 0.88.

(c) We next generated 100 samples of size 25. Here, df = n − 1 = 24 and the
t multiplier is t = 2.0639. In this case the proportion of our intervals that
contained the true mean (4) was 93

100 = 0.93.

(d) When 1000 samples of size 9 and 1000 samples of size 25 were generated, the
proportion of intervals that contained the true mean (4) was 903

1000 = 0.903 and
946
1000 = 0.946 respectively. For a discussion of the issues involved here, see page
411 of the book.

(e) It is working very well by the time n = 25 and it is not too terrible even at n = 9.
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