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Statistical tests 

Chris Wild, University of Auckland 

 

The randomisation tests you have seen and been using are a special case 

of what is known as statistical significance tests, or statistical hypothesis 

tests. (The situations we have worked with correspond to testing the 

hypothesis that “there are no true differences between the effects of the 

treatments”.) 

This optional article is primarily addressed at those of you who had 

already met statistical significance testing, in some shape or form, before 

starting this course. 

Just as with confidence intervals, there are methods for performing 

statistical significance tests based upon mathematical theories, 

particularly theory based on the normal distribution. You may have heard 

of the 2-sample t-test for testing for a difference between two group 

means, the one-way analysis of variance F-test for testing for differences 

between more than 2 group means, or the Chi-square test which can be 

used for testing for differences between proportions, and there are many 

more. These methods have a long history and became well-established 

long before modern computer power made computationally-intensive 

methods like the randomisation test a practical possibility.  

These theoretical methods are based on sampling theory – they assume 

that the data was sampled from a population of interest. There is no 

meaningful sampling involved in most experimental studies. The 

experimental units are “convenience samples” – people or entities close to 

hand who perhaps consented to be experimented upon. For these 

situations randomisation tests are the gold standard and the theoretical 

methods are justified by how well they approximate a relevant 

randomisation test. That said, subject to “passing appropriate assumption 

checks”, the theoretically-based methods referred to above usually do a 

good job. (And, for long established problems, “they got there first”.) 
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The tail proportions we have been working with correspond to the p-

values of significance testing theory (there is a complication about 

“sided-ness”that we will deal with at the end of this article). We will use 

the p-value language for the remainder of this article so that the lessons 

you learn are more transferable. There are direct equivalents of what we 

are doing in this course with experimental situations for sampling-from-

populations contexts but we won’t deal with them here as it would take 

too long to set those ideas up. All of the major messages below apply to 

the use of significance testing in sampling situations as well. 

Interpreting P-values 

In experimental situations a large p-value (large tail proportion) means 

that the luck of the randomisation quite often produces group differences 

as large or even larger than what we’ve got in our data. In this case the 

data provides no evidence that there are true treatment-group 

differences. 

A small p-value means that the luck of the randomisation draw hardly 

ever produces group differences as large as we’ve got in our data. They 

are almost always smaller. In this case the data does provide evidence 

that there are true treatment-group differences.  

Furthermore, the smaller the p-value, the stronger the evidence that true 

treatment differences exist. 

When should we start to claim “evidence” of true differences? 

It is quite common practice to start claiming evidence of true differences 

if the p-value is 5% or smaller. At that point the result is commonly said 

to be ”statistically significant” .  

If the p-value is greater than 5%, the group differences are then said to 

be “nonsignificant”. In this case, writers of research reports often 

mistakenly write, “There is no difference” between the treatment groups, 

or between the effects of the treatments. “Nonsignificance” does not 

mean this at all. It is much more like a “not proven” verdict. Not being 

able to prove that something exists is not at all the same as proving that 

it does not exist. 
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Statistical significance does not imply practical significance 

Treatment differences are statistically significant if “the data provides 

evidence that a true difference exists.”  

Treatment differences are practically significant if they are big enough to 

have a real-world impact. 

Statistical significance says nothing about the size of treatment 

differences. To estimate the sizes of differences you need confidence 

intervals. 

It also says nothing about whether these treatment differences are of any 

practical importance. For that you need both to know something about 

the size of the differences and to know whether differences of that size 

would have a practical impact. 

So when you read a news report about a new drug that significantly 

improves cancer survival, it does not generally mean that people will live 

a lot longer. It means that someone has done a significance test and 

found that people on the drug live detectably longer. If you read that 

some hazard makes no difference to cancer rates it usually doesn’t mean 

there is no difference, it means someone has done a significance test and 

got a p-value larger than 5% - that they were unable to “prove” that a 

true difference exists. 

Error rates and multiple testing 

For the purposes of this section we will think in terms of operating 

significance testing by getting excited (believing we’ve found a true 

difference) whenever we see a p-value smaller than 5%. 

If you do a large number of tests in situations where there are no true 

differences, then you will mistakenly say you’ve found a true difference 

for 5% of the tests you perform even though there are no true differences 

to be found. (This is called making Type 1 errors). 

Let’s think drug trials. Now nobody operates in situations where all the 

drugs they test are completely useless. But in medicine most bright ideas 

turn out not to work. Let’s suppose that 2% of the drugs we test produce 

detectable improvements, while 98% are completely useless. In the 
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course of a year, we test 1,000 drugs. We will end up claiming “true 

improvement” for the 20 good drugs (2% of 1,000) and 5% of the 980 (i.e. 

49) useless drugs. So of the drugs that we claim are “true improvements”, 

we have 20 real improvements and 49 false claims. 

Now let’s combine this with a historical practice in many research journals 

where only research with “significant results” gets published. It’s not hard 

to see why there have been claims that “most published research is 

false”. The development here is a gross oversimplification of reality but it 

does highlight an area for concern. (There is a good, if rather technical, 

discussion of these issues on the Simply Statistics blog). 

What all of this does highlight is that multiple testing is another area 

where, “Here be dragons”. (Here is a great xkcd comic about multiple 

testing). 

Geneticists working in genome-wide association studies are much less 

excitable. They work in a context where they test for associations 

between a disease and huge numbers of genes - believing that only a 

handful are active. They just don’t know what genes are in that handful. 

P-values of 5% or even 1% don’t raise the slightest flicker of interest. They 

don’t start getting excited until their p-values get smaller than about 10-8. 

If they are less stringent most of their results cannot be replicated. 

This isn’t a bad working rule: Don’t take study “results” too seriously until 

they’ve been replicated by others. (Independent replication doesn’t just 

address Type-1-error problems, it also addresses problems of bias.) 

Sided-ness 

You may have heard of 1-sided versus 2-sided tests (equivalently 1-tailed 

versus 2-tailed tests). What’s that all about? We’ve ignored the issue 

addressed by this dichotomy till now to keep the complexity levels down. 

Mainly we’ve emphasised tail proportions as a measure of “closeness to 

the edge” of the re-randomisation distribution. Consider the last video 

and the comparison between the proportions staying cocaine free under 

desipramine and lithium (the last video). In the data, the desipramine 

proportion was larger than the lithium proportion by 0.33 (33%) and the 

tail proportion was 0.02 (1 in 50). 

http://simplystatistics.org/2013/12/16/a-summary-of-the-evidence-that-most-published-research-is-false/
http://simplystatistics.org/
http://xkcd.com/882/
http://xkcd.com/882/
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Referring to the 0.33, I said that the values from re-randomisation were 

almost always smaller than that. But if desipramine being bigger than 

lithium by 0.33 made me sit up and take notice, so equally would 

desipramine being smaller than lithium by 0.33 (the same difference but 

in the opposite direction).  

So if I want to answer the question: “How unusual is 0.33 under re-

randomisation?” - I shouldn’t be looking just at the tail propoportion 

above 0.33, I should be looking at the sum of the tail proportion above 

0.33 plus the tail proportion below -0.33 (that is where the “2-tailed” 

comes from). If the re-randomisation distribution is basically symmetric 

this will be about or 4%. Thus, re-randomisation gives us a difference 

smaller in magnitude (or absolute value) than 0.33 about 96% of the time. 

So this is a small refinement of the way we argued in the video. 
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See Also 

• The Guardian: Can chocolate make you smarter? (And thinner? And healthier?) 

• XKCD cartoon: Clickbait-corrected p-value 

• 2019 Article in Nature about “Statistical Significance” 

• Teaching statistics through inferential reasoning (MOOC) 

This course allows you to learn, along with colleagues from other (mostly 

American) schools, how to emphasize inferential reasoning in teaching 

statistics through posing different types of investigative questions. 

https://www.theguardian.com/lifeandstyle/shortcuts/2016/mar/08/can-chocolate-make-you-smarter-and-thinner-and-healthier
https://xkcd.com/2001/
https://www.nature.com/articles/d41586-019-00857-9
https://place.fi.ncsu.edu/local/catalog/course.php?id=11&ref=1

