
 

 

Chapter 1: What is Statistics? 
 

 

1.2 The Nature of Statistics 
 

“Statistics”  as defined by the American Statistical Association (ASA)  “is the science of 

learning from data, and of measuring, controlling and communicating uncertainty.” Although 

not every statistician would agree with this description, it is an inclusive starting point with a solid 

pedigree. It encompasses and concisely encapsulates the “wider view” of Marquardt (1987) and 

Wild (1994), the “greater statistics” of Chambers (1993), the “wider field” of Bartholomew (1995), 

the broader vision advocated by Brown and Kass (2009), and the sets of definitions given in 

opening pages of Hahn and Doganaksoy (2012) and Fienberg (2014). It also encompasses the 

narrower views.  

 
Fig. 1.1: The statistical inquiry cycle 

 

Figure 1.1 gives a model of the statistical inquiry cycle from Wild and Pfannkuch (1999). This 

partial, rudimentary “map” hints at the diversity of domains that contribute to “learning from 

data.” The ASA description of statistics given above covers all elements seen in this diagram and 

more. Although statisticians have wrestled with every aspect of this cycle, particular attention has 

been given by statistical theory-and-methods thinkers and researchers to different elements at 

different times. For at least the last half century, the main focus has been on the use of probabilistic 

models in the Analysis and Conclusions stages and to a lesser extent, on sampling designs and 

experimental designs in the Plan stage. But a wider view is needed to chart the way of statistics 

education into the future. 

 

The disciplines of statistics and, more specifically, statistics education are, by their very nature, in 

the “future” business. The mission of statistical education is to provide conceptual frameworks 

(structured ways of thinking) and practical skills to better equip our students for their future lives 

in a fast-changing world. Because the data-universe is expanding and changing so fast, educators 

need to focus more on looking forward than looking back. We must also look back, of course, but 

predominantly so that we can plunder our history’s storehouses of wisdom to better chart pathways 

into the future. For educational purposes, statistics needs to be defined by the ends it pursues rather 

than the means statisticians have most often used to pursue them in the past. Changing capabilities, 
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like those provided by advancing technology, can change the preferred means for pursuing goals 

over time but the fundamental goals themselves will remain the same. The big-picture definition 

that we opened with “keeps our eyes on the ball” by placing at the centre of our universe the 

fundamental human need to be able to learn about how our world operates using data, all the while 

acknowledging sources and levels of uncertainty. 

 

“Statisticians develop new methodologies in the context of a specific substantive problem,” 

Fienberg (2014) says, “but they also step back and integrate what they have learned into a more 

general framework using statistical principles and thinking. Then, they can carry their ideas into 

new areas and apply variations in innovative ways.” At their core, most disciplines think and learn 

about some particular aspects of life and the world, be it the physical nature of the universe, living 

organisms, or how economies or societies function. Statistics is a meta-discipline in that it thinks 

about how to think about turning data into real-world insights. Statistics as a meta-discipline 

advances when the methodological lessons and principles from a particular piece of work are 

abstracted and incorporated into a theoretical scaffold that enables them to be used on many other 

problems in many other places.  

 

1.2.1 History of Statistics 
 

Although the collection of forms of census data goes back into antiquity, rulers “were interested in 

keeping track of their people, money and key events (such as wars and the flooding of the Nile) but 

little else in the way of quantitative assessment of the world at large” (Scheaffer, 2001, para. 3). 

The statistical analysis of data is usually traced back to the work of John Graunt (e.g., his 1662 

book Natural and Political Observations). For example, Graunt concluded that the plague was 

caused by person-to-person infection rather than the competing theory of “infectious air” based on 

the pattern of infections through time. Graunt and other “political arithmeticians” from across 

Western Europe were influenced during the Renaissance by the rise of science based on 

observation of the natural world. And they “thought as we think today … they reasoned about their 

data” (Kendall, 1960, p. 448). They estimated, predicted, and learned from the data – they did not 

just describe or collect facts – and they promoted the notion that state policy should be informed 

by the use of data rather than by the authority of church and nobility (Porter, 1986). But the 

political arithmetician’s uses of statistics lacked formal methodological techniques for gathering 

and analysing data. Methods for sample surveys and census taking were in their infancy well into 

the nineteenth century (Fienberg, 2014). 

 

Another thread in the development of modern statistics was the foundations of probability, with its 

origins in games of chance, as laid down by Pascal (1623–1662) and later Bernoulli (1654–1705). 

The big conceptual steps towards the application of probability to quantitative inference were 

taken by Bayes in 1764 and Laplace (1749-1827) by inverting probability analyses. 

 
The science that held sway above all others around 1800 was astronomy, and the great 

mathematicians of the day made their scientific contributions in that area. Legendre (least 

squares), Gauss (normal theory of errors), and Laplace (least squares and the central limit 

theorem) all were motivated by problems in astronomy. (Scheaffer, 2001, para. 6)  

 

These ideas were later applied to social data by Quetelet (1796–1874), who was trying to infer 

general laws governing human action. This was after the French Revolution when there was a 

subtle shift in thinking of statistics as a science of the state with the statists, as they were known, 

conducting surveys of trade, industrial progress, labour, poverty, education, sanitation, and crime 

(Porter, 1986). 



 

 

 

A third thread in the development of statistics involves statistical graphics. The first major figure is 

William Playfair (17591823), credited with inventing the line and bar charts for economic data 

and the pie chart. Friendly (2008) characterises the period from 1850 to 1900 as the “golden age of 

statistical graphics” (p. 2). This is the era of John Snow’s dot map of cholera data and the Broad 

Street pump, of Minard’s famous graph showing losses of soldiers in Napoleon’s march on 

Moscow and subsequent retreat, of Florence Nightingale’s coxcomb plot used to persuade of the 

need for better military field hospitals, of the advent of most of the graphic forms we still use for 

conveying geographically-linked information on maps, including such things as flow diagrams of 

traffic patterns, of grids of related graphs, of contour plots of 3-dimensional tables, population 

pyramids, scatterplots and many more. 

 

The Royal Statistical Society began in 1834 as the London Statistical Society (LSS), and the 

American Statistical Association was formed in 1839 by five men interested in improving the U.S. 

census (Horton, 2015; Utts, 2015). Influential founders of the LSS (Pullinger, 2014, 825827) 

included Adolphe Quetelet, Charles Babbage (inventor of the computer), and Thomas Malthus 

(famous for his theories about population growth). The first female LSS member was Florence 

Nightingale, who joined in 1858 (she also became a member of the ASA, as did Alexander 

Graham Bell, Herman Hollerith, Andrew Carnegie, and Martin Van Buren). These early members 

of LSS and ASA were remarkable for representing such a very wide variety of real-world areas of 

activity (scientific, economic, political, and social), and their influence in society. 

 
Near the end of the nineteenth century, the roots of a theory of statistics emerge from the 

work of Francis Galton and Francis Ysidro Edgeworth and from that of Karl Pearson and 

George Udny Yule somewhat later. These scientists came to statistics from biology, 

economics, and social science more broadly, and they developed more formal statistical 

methods that could be used not just within their fields of interest but across the spectrum of 

the sciences. (Fienberg, 2014)  

 

Another wave of activity into the 1920s was initiated by the concerns of William Gosset, reaching 

its culmination in the insights of Ronald Fisher with the development of experimental design, 

analysis of variance, maximum likelihood estimation, and refinement of significance testing. This 

was followed by the collaboration of Egon Pearson and Jerzy Neyman in the 1930s, giving rise to 

hypothesis testing and confidence intervals. At about the same time came Bruno de Finetti’s 

seminal work on subjective Bayesian inference and Harold Jeffreys’s work on “objective” 

Bayesian inference so that by 1940 we had most of the basics of the theories of the “modern 

statistics” of the twentieth century. World War II was also a time of great progress as a result of 

drafting many young, mathematically gifted people into positions where they had to find timely 

answers to problems related to the war effort. Many of them stayed in the field of statistics 

swelling the profession. We also draw particular attention to John Tukey’s introduction of 

“exploratory data analysis” in the 1970s. 

 

Short histories of statistics include Fienberg (2014, Section 3); Scheaffer (2001), who emphasized 

how mathematicians were funded or employed and the influence this had on what they thought 

about and developed; and Pfannkuch and Wild (2004) who described the development of statistical 

thinking. Lengthier accounts are given by Fienberg (1992), and the books by Porter (1986), Stigler 

(1986, 2016), and Hacking (1990). Key references about the history of statistics education include 

Vere-Jones (1995), Scheaffer (2001), Holmes (2003), and Forbes (2014); see also Chapter 2. 

 

1.2.2 Statistical Thinking 



 

 

 

Statisticians need to be able to think in several ways: statistically, mathematically, and 

computationally. The thinking modes used in data analysis differ from those used in working with 

mathematical derivations, which in turn differ from those used for writing computational code. 

Although there are very strong internal connections within each of these thinking modes, there are 

relatively weak connections among them. Here we will concentrate on “statistical thinking” in the 

sense of the most distinctively statistical parts of the thinking that goes on in solving real-world 

problems using data. 

 

In statistics, however, we sometimes talk about “solving real world (or practical) problems” far too 

loosely. For the general public, “solving a real-world problem” involves taking action so that the 

problem either goes away or is at least reduced (e.g., unemployment levels are reduced). We need 

to better distinguish between satisfying “a need to act” and “a need to know.” Figuring out how to 

act to solve a problem will typically require acquiring more knowledge. This is where statistical 

inquiry can be useful. It addresses “a need to know.” So when statisticians talk about solving a 

real-world problem, we are generally talking about solving a (real-world) knowledge-deficit or 

understanding-deficit problem. 

 

1.2.2.1 Dimension 1 - PPDAC Wild and Pfannkuch (1999) investigated the nature of statistical 

thinking in this sense using available literature, interviews with practicing statisticians, and 

interviews with students performing statistical-enquiry activities; and presented models for 

different “dimensions” of statistical thinking. Dimension 1 of their work was the PPDAC model 

(Fig. 1.1) of the inquiry cycle. The basic PPDAC model was due to and later published by MacKay 

and Oldford (2000). There are also other essentially equivalent descriptions of the statistical 

inquiry cycle. The inquiry cycle has connections with standard descriptions of the “scientific 

method” (cf. https://en.wikipedia.org/wiki/Scientific_method) but is more flexible, omitting the 

latter’s strong emphasis on being hypothesis driven and having (scientific) theory-formulation as 

its ultimate objective.  

 

The PPDAC inquiry cycle reminds us of the major steps involved in carrying out a statistical 

inquiry. It is the setting in which statistical thinking takes place. The initial “P” in PPDAC 

spotlights the problem (or question) crystallisation phase. In the early stages, the problem is 

typically poorly defined. People start with very vague ideas about what their problems are, what 

they need to understand, and why. The Problem step is about trying to turn these vague feelings 

into much more precise informational goals, some very specific questions that should be able to be 

answered using data. Arriving at useful questions that can realistically be answered using statistical 

data always involves a lot of hard thinking and often a lot of hard preparatory work. Statistics 

education research says little about this but the PhD thesis of Arnold (2013) makes a very good 

start. 

 

The Plan step is then about deciding what people/objects/entities to obtain data on, what things we 

should “measure,” and how we are going to do all of this. The Data step is about obtaining the 

data, storing it, and “whipping it into shape” (data wrangling and cleaning). The Analysis step 

which follows, and the Conclusions step, are about making sense of it all and then abstracting and 

communicating what has been learned. There is always a back-and-forth involving doing analysis, 

tentatively forming conclusions, and doing more analysis. In fact there is back-and-forth between 

the major steps whenever something new gets learned in a subsequent step that leads to modifying 

an earlier decision. 

 

https://en.wikipedia.org/wiki/Scientific_method


 

 

Any substantial learning from data involves extrapolating from what you can see in the data you 

have to how it might relate to some wider universe. PPDAC focuses on data gathered for a purpose 

using planned processes, processes that are chosen on statistical grounds to justify certain types of 

extrapolation. Much of the current “big-data” buzz relates to exploiting opportunistic 

(happenstance or “found”) data – data that just happen to be available in electronic form because 

they have accumulated for other reasons, such as the result of the administrative processes of 

business or government, audit trails of internet activity, or billing data from medical procedures.  

 
In a very real sense, we have walked into the theatre half way through the movie and have 

then to pick up the story. … For opportunistic data there is no extrapolation that is justified 

by a data-collection process specifically designed to facilitate that extrapolation. The best we 

can do is to try to forensically reconstruct what this data is and how it came to be (its 

‘provenance’). What entities were ‘measures’ taken on? What measures have been employed 

and how? By what processes did some things get to be recorded and others not? What 

distortions might this cause? It is all about trying to gauge the extent to which we can 

generalize from patterns in the data to the way we think it will be in populations or processes 

that we care about. (Wild, 2017) 

 

In particular, we are on the lookout for biases that could lead us to false conclusions. 

 

1.2.2.2 Other Dimensions  Dimension 2 of Wild and Pfannkuch’s model lists Types of Thinking, 

broken out into General Types and Types Fundamental to Statistics. The General Types are 

strategic, seeking explanations, constructing and using models, and applying techniques (solving 

problems by mapping them on to problem archetypes). The Types Fundamental to Statistics listed 

are recognition of the need for data, transnumeration (changing data representations in search of 

those that trigger understanding), consideration of variation and its sources, reasoning using 

statistical models, and integrating the statistical and the contextual (information, knowledge, 

conceptions). Something that is not highlighted here is the inductive nature of statistical inference 

– extrapolation from data on a part to reach conclusions about a whole (wider reality).  

 

Dimension 3 is the interrogative cycle, a continually-operating high-frequency cycle of Generating 

(possible informational requirements, explanations, or plans of attack), Seeking (information and 

ideas), Interpreting these, Criticizing them against reference points and Judging whether to accept, 

reject, or tentatively entertain them. Grolemund and Wickham (2014) dig much deeper into this 

dimension bringing in important ideas from the cognitive literature such as schemas (mental 

models in which knowledge is stored). In very oversimplified terms, when new information 

“arrives” a relevant schema is searched for internally to which it is compared. If discrepancies are 

detected (“insights”) the schema is updated or the information is dismissed as non-credible. 

Grolemund and Wickham explore this in the context of types of information we seek and obtain in 

the process of analysing data. 

 

Dimension 4 consists of a list of personal qualities, or dispositions, successful practitioners bring 

to their problem solving: scepticism; imagination, curiosity and awareness, a propensity to seek 

deeper meaning, being logical, engagement, and perseverance. This is amplified in Hahn and 

Doganaksoy’s chapter “Characteristics of Successful Statisticians” (2012, Chapter 6). 

 

1.2.2.3 Statistical Thinking for Beginners Although it only scratches the surface, the above still 

underscores the richness and complexity of thinking involved in real-world statistical problem 

solving and provides a useful set of reference points against which researchers and teachers can 

triangulate educational experiences (“Where is …  being addressed?”). It is, however, far too 



 

 

complex for most students, particularly beginners. In discussing Wild and Pfannkuch, Moore 

(1999) asked, “What Shall We Teach Beginners?” He suggested “… we can start by mapping 

more detailed structures for the ‘Data, Analysis, Conclusions’ portion of the investigative cycle, 

that is, for conceptual content currently central to elementary instruction. Here is an example of 

such a structure:  

 
When you first examine a set of data, (1) begin by graphing the data and interpreting what 

you see; (2) look for overall patterns and for striking deviations from those patterns, and seek 

explanations in the problem context; (3) based on examination of the data, choose appropriate 

numerical descriptions of specific aspects; (4) if the overall pattern is sufficiently regular, 

seek a compact mathematical model for that pattern. (p. 251) 

 

Moore (1998) offered the following for basic critique, which complements his 1999 list of 

strategies with “Data beat anecdotes” and the largely metacognitive questions, “Is this the right 

question? Does the answer make sense? Can you read a graph? Do you have filters for quantitative 

nonsense?” (p. 1258). 

 

There are great advantages in short, snappy lists as starting points. Chance’s (2002) seven habits 

(p. 4) bring in much of Moore’s lists, and the section headings are even “snappier”: “Start from the 

beginning. Understand the statistical process as a whole. Always be sceptical. Think about the 

variables involved. Always relate the data to the context. Understand (and believe) the relevance of 

statistics. Think beyond the textbook.” Grolemund and Wickham (2014, Section 5) give similar 

lists for more advanced students. Brown and Kass (2009) state, “when faced with a problem 

statement and a set of data, naïve students immediately tried to find a suitable statistical technique 

(e.g., chi-squared, t-test), whereas the experts began by identifying the scientific question” (p. 123). 

They highlighted three “principles of statistical thinking”:  

1. Statistical models of regularity and variability in data may be used to express 

knowledge and uncertainty about a signal in the presence of noise, via inductive 

reasoning. (p. 109) 

2. Statistical methods may be analyzed to determine how well they are likely to perform. 

(p. 109) 

3. Computational considerations help determine the way statistical problems are 

formalized. (p. 122) 

 

We conclude with the very specialised definition of Snee (1990), which is widely used in quality 

improvement for business and organisations,  

 
I define statistical thinking as thought processes, which recognize that variation is all around 

us and present in everything we do, all work is a series of interconnected processes, and 

identifying, characterizing, quantifying, controlling, and reducing variation provide 

opportunities for improvement. (p. 118) 

 

1.2.3 Relationship with Mathematics 
 

Although definitions that characterise statistics as a branch of mathematics still linger in some 

dictionaries, the separate and distinct nature of statistics as a discipline is now established. 

“Statistical thinking,” as Moore (1998) said, “is a general, fundamental, and independent mode of 

reasoning about data, variation, and chance” (p. 1257). “Statistics at its best provides methodology 

for dealing empirically with complicated and uncertain information, in a way that is both useful 

and scientifically valid” (Chambers, 1993). 



 

 

 

“Statistics is a methodological discipline. It exists not for itself but rather to offer to other fields of 

study a coherent set of ideas and tools for dealing with data” (Cobb and Moore, 1997, p. 801). To 

accomplish those ends it presses into service any tools that are of help. Mathematics contains many 

very useful tools (as does computing). Just as physics attempts to understand the physical universe 

and presses mathematics into service wherever it can help, so too statistics attempts to turn data 

into real-world insights and presses mathematics into service wherever it can help. And whereas in 

mathematics, mathematical structures can exist and be of enormous interest for their own sake, in 

statistics, mathematical structures are merely a means to an end (see also Box, 1990, paragraph 2; 

De Veaux and Velleman, 2008).   A consequence is that whereas a mathematician prefers an exact 

answer to an approximate question, an applied statistician prefers an approximate answer to an 

exact question. 

 

1.2.3.1 Role of Context  The focus of the discipline, and in particular the role of context, is also 

distinct. “Statistics is not just about the methodology in a particular application domain; it also 

focuses on how to go from the particular to the general and back to the particular again” (Fienberg, 

2014).  

 

Although mathematicians often rely on applied context both for motivation and as a source of 

problems for research, the ultimate focus in mathematical thinking is on abstract patterns: the 

context is part of the irrelevant detail that must be boiled off over the flame of abstraction in 

order to reveal the previously hidden crystal of pure structure. In mathematics, context 

obscures structure. Like mathematicians, data analysts also look for patterns, but ultimately, 

in data analysis, whether the patterns have meaning, and whether they have any value, 

depends on how the threads of those patterns interweave with the complementary threads of 

the story line. In data analysis, context provides meaning. (Cobb & Moore, 1997, p. 803; our 

emphasis)  

 

There is a constant “interplay between pattern and context” (Cobb & Moore, 1997). As for 

statistical investigations for real-world problems, the ultimate learning is new knowledge about the 

context domain – we have gone “from the particular to the general” (to enable us to use methods 

stored in our statistical repository) “and back to the particular again” (to extract the real-world 

learnings). 

 

1.2.3.2 Role of Theory  When most statisticians speak of “statistical theory” they are thinking of 

mathematical theories comprising “statistical models” and principled ways of reasoning with and 

drawing conclusions using such models. “Statistical models,” which play a core role in most 

analyses, are mathematical models that include chance or random elements incorporated in 

probability-theory terms. Perhaps the simplest example of such a model is y = µ +   where we 

think in terms of y being an attempt to measure a quantity of interest µ in the process of which we 

incur a random error  (which might be modelled as having a normal distribution, say). In the 

simple linear model: y = 0  + 1x  + , the mean value of y depends linearly on the value of an 

explanatory variable x rather than being a constant. Random terms (cf. ) model the unpredictable 

part of a process and give us ways of incorporating and working with uncertainties. “Statistical 

theory” in this sense is largely synonymous with “mathematical statistics.” 

 

"Probability theory” is a body of mathematical theory, originally motivated by games of chance 

but latterly much more by the needs of statistical modelling, which takes abstracted ideas about 

randomness, forms mathematical structures that encode these ideas and makes deductions about 



 

 

the behaviour of these structures. Statistical modellers use these structures as some of the building 

blocks that they can use in constructing their models, as with the random-error term in the very 

simple model above. Recent work by Pfannkuch et al. (2016) draws on interviews with stochastic-

modelling practitioners to explore probability modelling from a statistical education perspective. 

The paper offers a new set of (conceptual) models of this activity. Their SWAMTU model is 

basically a cycle (with some feedback). It has nodes problem Situation  Want (to know)  

Assumptions  Model  Test  Use. Models are always derived from a set of mathematical 

assumptions so that assumption checking against data is, or should be, a core part of their 

construction and use. As well as being used in statistical analysis, they are commonly used to try to 

answer “what-if” questions (e.g., “What would happen if the supermarket added another checkout 

operator?”).  Although there is much that is distinct about statistical problem solving, there is also 

much that is in common with mathematical problem solving so that statistics education researchers 

can learn a lot from work in mathematics education research, and classic works such as Schoenfeld 

(1985). 

 

When most statisticians think “theory,” they are thinking of mathematical theories that underpin 

many important practices in the Analysis and Plan stages of PPDAC. But “theory” is also 

applicable whenever we form abstracted or generalized explanations of how things work. 

Consequently, there is also theory about other elements of PPDAC, often described using tools like 

process diagrams (cf. Fig. 1.1). Grolemund and Wickham (2014) propose a theoretical model for 

the data analysis process by comparing it to the cognitive process of the human mind called 

“sensemaking.” 

 

In recent years there has also been a shift in the “balance of power” from overtly mathematical 

approaches to data analysis towards computationally-intensive approaches (e.g., using computer-

simulation-based approaches including bootstrapping and randomisation tests, flexible trend 

smoothers, and classification algorithms). Here the underlying models make much weaker 

assumptions and cannot be described in terms of simple equations. So, although “the practice of 

statistics requires mathematics for the development of its underlying theory, statistics is distinct 

from mathematics and requires many nonmathematical skills” (American Statistical Association 

Undergraduate Guidelines Workgroup, 2014, p. 8). These skills (required also by many other 

disciplines) include basic scientific thinking, computational/algorithmic thinking, 

graphical/visualisation thinking, and communication skills. 

 

So, “… how is it then that statistics came to be seen as a branch of mathematics? It makes no more 

sense to us than considering chemical engineering as a branch of mathematics” (Madigan and 

Gelman’s discussion of Brown and Kass, 2009, p. 114). The large majority of senior statisticians 

of the last half century began their academic careers as mathematics majors. Originally, 

computational capabilities were extremely limited and mathematical solutions to simplified 

problems and mathematical approximations were hugely important (Cobb, 2015). The academic 

statisticians also worked in environments where the reward systems overwhelmingly favoured 

mathematical developments. The wake-up call from “big data” and “data science” is helping nudge 

statistics back toward its earlier, and much more holistic, roots in broad scientific inference. 

Though the elements of all of this, and their champions, have always been there, in universities the 

broader practical dimensions became overshadowed and underappreciated.  

 
 


