
 

 

President, American Statistical Association

Chair, Statistical Education Section, ASA

Chapter 1: What is Statistics? 
Christopher J. Wild, Jessica M. Utts, and Nicholas J. Horton 

 
Christopher J. Wild 

University of Auckland, New Zealand 

 

Jessica M. Utts  

University of California, Irvine, United States 

 

Nicholas J. Horton 

Amherst College, United States 

 

 e-mail: c.wild@auckland.ac.nz, jutts@uci.edu, nhorton@amherst.edu 

 

Abstract 

 
What is Statistics? We attempt to answer this question as it relates to grounding research in 

statistics education. We discuss the nature of statistics (the science of learning from data), its 

history and traditions, what characterises statistical thinking and how it differs from 

mathematics, connections with computing and data science, why learning statistics is essential, 

and what is most important. Finally, we attempt to gaze into the future, drawing upon what is 

known about the fast-growing demand for statistical skills and the portents of where the 

discipline is heading, especially those arising from data science and the promises and problems 

of big data. 
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1.1 Introduction 
 

In this, the opening chapter of the International Handbook of Research in Statistics Education, we 

ask the question, “What is statistics?” This question is not considered in isolation, however, but in 

the context of grounding research in statistics education. Educational endeavour in statistics can 

be divided very broadly into “What?” and “How?” The “What?” deals with the nature and extent 

of the discipline to be conveyed, whereas any consideration of “How?” (including “When?”) 

brings into play a host of additional factors, such as cognition and learning theories, audience and 

readiness, attitudes, social interactions with teachers and other students, and learning and 

assessment strategies and systems. 

 

This chapter discusses the nature of statistics as it relates to the teaching of statistics. The chapter 

has three main sections. Section 2 discusses the nature of statistics, including a brief historical 

overview and discussion of statistical thinking and differences with mathematics. Section 3 

follows this up with a discussion of why learning statistics is important. Section 4 concludes the 

chapter with a discussion of the growing demand for statistical skills and a look at where the 

discipline is heading. A thread pervading the chapter is changing conceptions of the nature of 



 

 

statistics over time with an increasing emphasis recently on broad, as opposed to narrow, 

conceptions of what statistics is. We emphasize broader conceptions because we believe they best 

address emerging areas of need and because we do not want researchers to feel constrained when 

it comes to deciding what constitutes fair game as targets for research. 

 

 

1.2 The Nature of Statistics 
 

“Statistics”  as defined by the American Statistical Association (ASA)  “is the science of 

learning from data, and of measuring, controlling and communicating uncertainty.” Although 

not every statistician would agree with this description, it is an inclusive starting point with a solid 

pedigree. It encompasses and concisely encapsulates the “wider view” of Marquardt (1987) and 

Wild (1994), the “greater statistics” of Chambers (1993), the “wider field” of Bartholomew (1995), 

the broader vision advocated by Brown and Kass (2009), and the sets of definitions given in 

opening pages of Hahn and Doganaksoy (2012) and Fienberg (2014). It also encompasses the 

narrower views.  

 
Fig. 1.1: The statistical inquiry cycle 

 

Figure 1.1 gives a model of the statistical inquiry cycle from Wild and Pfannkuch (1999). This 

partial, rudimentary “map” hints at the diversity of domains that contribute to “learning from 

data.” The ASA description of statistics given above covers all elements seen in this diagram and 

more. Although statisticians have wrestled with every aspect of this cycle, particular attention has 

been given by statistical theory-and-methods thinkers and researchers to different elements at 

different times. For at least the last half century, the main focus has been on the use of probabilistic 

models in the Analysis and Conclusions stages and to a lesser extent, on sampling designs and 

experimental designs in the Plan stage. But a wider view is needed to chart the way of statistics 

education into the future. 

 

The disciplines of statistics and, more specifically, statistics education are, by their very nature, in 

the “future” business. The mission of statistical education is to provide conceptual frameworks 

(structured ways of thinking) and practical skills to better equip our students for their future lives 

in a fast-changing world. Because the data-universe is expanding and changing so fast, educators 

need to focus more on looking forward than looking back. We must also look back, of course, but 

predominantly so that we can plunder our history’s storehouses of wisdom to better chart pathways 
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into the future. For educational purposes, statistics needs to be defined by the ends it pursues rather 

than the means statisticians have most often used to pursue them in the past. Changing capabilities, 

like those provided by advancing technology, can change the preferred means for pursuing goals 

over time but the fundamental goals themselves will remain the same. The big-picture definition 

that we opened with “keeps our eyes on the ball” by placing at the centre of our universe the 

fundamental human need to be able to learn about how our world operates using data, all the while 

acknowledging sources and levels of uncertainty. 

 

“Statisticians develop new methodologies in the context of a specific substantive problem,” 

Fienberg (2014) says, “but they also step back and integrate what they have learned into a more 

general framework using statistical principles and thinking. Then, they can carry their ideas into 

new areas and apply variations in innovative ways.” At their core, most disciplines think and learn 

about some particular aspects of life and the world, be it the physical nature of the universe, living 

organisms, or how economies or societies function. Statistics is a meta-discipline in that it thinks 

about how to think about turning data into real-world insights. Statistics as a meta-discipline 

advances when the methodological lessons and principles from a particular piece of work are 

abstracted and incorporated into a theoretical scaffold that enables them to be used on many other 

problems in many other places.  

 

1.2.1 History of Statistics 
 

Although the collection of forms of census data goes back into antiquity, rulers “were interested in 

keeping track of their people, money and key events (such as wars and the flooding of the Nile) but 

little else in the way of quantitative assessment of the world at large” (Scheaffer, 2001, para. 3). 

The statistical analysis of data is usually traced back to the work of John Graunt (e.g., his 1662 

book Natural and Political Observations). For example, Graunt concluded that the plague was 

caused by person-to-person infection rather than the competing theory of “infectious air” based on 

the pattern of infections through time. Graunt and other “political arithmeticians” from across 

Western Europe were influenced during the Renaissance by the rise of science based on 

observation of the natural world. And they “thought as we think today … they reasoned about their 

data” (Kendall, 1960, p. 448). They estimated, predicted, and learned from the data – they did not 

just describe or collect facts – and they promoted the notion that state policy should be informed 

by the use of data rather than by the authority of church and nobility (Porter, 1986). But the 

political arithmetician’s uses of statistics lacked formal methodological techniques for gathering 

and analysing data. Methods for sample surveys and census taking were in their infancy well into 

the nineteenth century (Fienberg, 2014). 

 

Another thread in the development of modern statistics was the foundations of probability, with its 

origins in games of chance, as laid down by Pascal (1623–1662) and later Bernoulli (1654–1705). 

The big conceptual steps towards the application of probability to quantitative inference were 

taken by Bayes in 1764 and Laplace (1749-1827) by inverting probability analyses. 

 
The science that held sway above all others around 1800 was astronomy, and the great 

mathematicians of the day made their scientific contributions in that area. Legendre (least 

squares), Gauss (normal theory of errors), and Laplace (least squares and the central limit 

theorem) all were motivated by problems in astronomy. (Scheaffer, 2001, para. 6)  

 

These ideas were later applied to social data by Quetelet (1796–1874), who was trying to infer 

general laws governing human action. This was after the French Revolution when there was a 

subtle shift in thinking of statistics as a science of the state with the statists, as they were known, 



 

 

conducting surveys of trade, industrial progress, labour, poverty, education, sanitation, and crime 

(Porter, 1986). 

 

A third thread in the development of statistics involves statistical graphics. The first major figure is 

William Playfair (17591823), credited with inventing the line and bar charts for economic data 

and the pie chart. Friendly (2008) characterises the period from 1850 to 1900 as the “golden age of 

statistical graphics” (p. 2). This is the era of John Snow’s dot map of cholera data and the Broad 

Street pump, of Minard’s famous graph showing losses of soldiers in Napoleon’s march on 

Moscow and subsequent retreat, of Florence Nightingale’s coxcomb plot used to persuade of the 

need for better military field hospitals, of the advent of most of the graphic forms we still use for 

conveying geographically-linked information on maps, including such things as flow diagrams of 

traffic patterns, of grids of related graphs, of contour plots of 3-dimensional tables, population 

pyramids, scatterplots and many more. 

 

The Royal Statistical Society began in 1834 as the London Statistical Society (LSS), and the 

American Statistical Association was formed in 1839 by five men interested in improving the U.S. 

census (Horton, 2015; Utts, 2015). Influential founders of the LSS (Pullinger, 2014, 825827) 

included Adolphe Quetelet, Charles Babbage (inventor of the computer), and Thomas Malthus 

(famous for his theories about population growth). The first female LSS member was Florence 

Nightingale, who joined in 1858 (she also became a member of the ASA, as did Alexander 

Graham Bell, Herman Hollerith, Andrew Carnegie, and Martin Van Buren). These early members 

of LSS and ASA were remarkable for representing such a very wide variety of real-world areas of 

activity (scientific, economic, political, and social), and their influence in society. 

 
Near the end of the nineteenth century, the roots of a theory of statistics emerge from the 

work of Francis Galton and Francis Ysidro Edgeworth and from that of Karl Pearson and 

George Udny Yule somewhat later. These scientists came to statistics from biology, 

economics, and social science more broadly, and they developed more formal statistical 

methods that could be used not just within their fields of interest but across the spectrum of 

the sciences. (Fienberg, 2014)  

 

Another wave of activity into the 1920s was initiated by the concerns of William Gosset, reaching 

its culmination in the insights of Ronald Fisher with the development of experimental design, 

analysis of variance, maximum likelihood estimation, and refinement of significance testing. This 

was followed by the collaboration of Egon Pearson and Jerzy Neyman in the 1930s, giving rise to 

hypothesis testing and confidence intervals. At about the same time came Bruno de Finetti’s 

seminal work on subjective Bayesian inference and Harold Jeffreys’s work on “objective” 

Bayesian inference so that by 1940 we had most of the basics of the theories of the “modern 

statistics” of the twentieth century. World War II was also a time of great progress as a result of 

drafting many young, mathematically gifted people into positions where they had to find timely 

answers to problems related to the war effort. Many of them stayed in the field of statistics 

swelling the profession. We also draw particular attention to John Tukey’s introduction of 

“exploratory data analysis” in the 1970s. 

 

Short histories of statistics include Fienberg (2014, Section 3); Scheaffer (2001), who emphasized 

how mathematicians were funded or employed and the influence this had on what they thought 

about and developed; and Pfannkuch and Wild (2004) who described the development of statistical 

thinking. Lengthier accounts are given by Fienberg (1992), and the books by Porter (1986), Stigler 

(1986, 2016), and Hacking (1990). Key references about the history of statistics education include 

Vere-Jones (1995), Scheaffer (2001), Holmes (2003), and Forbes (2014); see also Chapter 2. 



 

 

 

1.2.2 Statistical Thinking 
 

Statisticians need to be able to think in several ways: statistically, mathematically, and 

computationally. The thinking modes used in data analysis differ from those used in working with 

mathematical derivations, which in turn differ from those used for writing computational code. 

Although there are very strong internal connections within each of these thinking modes, there are 

relatively weak connections among them. Here we will concentrate on “statistical thinking” in the 

sense of the most distinctively statistical parts of the thinking that goes on in solving real-world 

problems using data. 

 

In statistics, however, we sometimes talk about “solving real world (or practical) problems” far too 

loosely. For the general public, “solving a real-world problem” involves taking action so that the 

problem either goes away or is at least reduced (e.g., unemployment levels are reduced). We need 

to better distinguish between satisfying “a need to act” and “a need to know.” Figuring out how to 

act to solve a problem will typically require acquiring more knowledge. This is where statistical 

inquiry can be useful. It addresses “a need to know.” So when statisticians talk about solving a 

real-world problem, we are generally talking about solving a (real-world) knowledge-deficit or 

understanding-deficit problem. 

 

1.2.2.1 Dimension 1 - PPDAC Wild and Pfannkuch (1999) investigated the nature of statistical 

thinking in this sense using available literature, interviews with practicing statisticians, and 

interviews with students performing statistical-enquiry activities; and presented models for 

different “dimensions” of statistical thinking. Dimension 1 of their work was the PPDAC model 

(Fig. 1.1) of the inquiry cycle. The basic PPDAC model was due to and later published by MacKay 

and Oldford (2000). There are also other essentially equivalent descriptions of the statistical 

inquiry cycle. The inquiry cycle has connections with standard descriptions of the “scientific 

method” (cf. https://en.wikipedia.org/wiki/Scientific_method) but is more flexible, omitting the 

latter’s strong emphasis on being hypothesis driven and having (scientific) theory-formulation as 

its ultimate objective.  

 

The PPDAC inquiry cycle reminds us of the major steps involved in carrying out a statistical 

inquiry. It is the setting in which statistical thinking takes place. The initial “P” in PPDAC 

spotlights the problem (or question) crystallisation phase. In the early stages, the problem is 

typically poorly defined. People start with very vague ideas about what their problems are, what 

they need to understand, and why. The Problem step is about trying to turn these vague feelings 

into much more precise informational goals, some very specific questions that should be able to be 

answered using data. Arriving at useful questions that can realistically be answered using statistical 

data always involves a lot of hard thinking and often a lot of hard preparatory work. Statistics 

education research says little about this but the PhD thesis of Arnold (2013) makes a very good 

start. 

 

The Plan step is then about deciding what people/objects/entities to obtain data on, what things we 

should “measure,” and how we are going to do all of this. The Data step is about obtaining the 

data, storing it, and “whipping it into shape” (data wrangling and cleaning). The Analysis step 

which follows, and the Conclusions step, are about making sense of it all and then abstracting and 

communicating what has been learned. There is always a back-and-forth involving doing analysis, 

tentatively forming conclusions, and doing more analysis. In fact there is back-and-forth between 

https://en.wikipedia.org/wiki/Scientific_method


 

 

the major steps whenever something new gets learned in a subsequent step that leads to modifying 

an earlier decision. 

 

Any substantial learning from data involves extrapolating from what you can see in the data you 

have to how it might relate to some wider universe. PPDAC focuses on data gathered for a purpose 

using planned processes, processes that are chosen on statistical grounds to justify certain types of 

extrapolation. Much of the current “big-data” buzz relates to exploiting opportunistic 

(happenstance or “found”) data – data that just happen to be available in electronic form because 

they have accumulated for other reasons, such as the result of the administrative processes of 

business or government, audit trails of internet activity, or billing data from medical procedures.  

 
In a very real sense, we have walked into the theatre half way through the movie and have 

then to pick up the story. … For opportunistic data there is no extrapolation that is justified 

by a data-collection process specifically designed to facilitate that extrapolation. The best we 

can do is to try to forensically reconstruct what this data is and how it came to be (its 

‘provenance’). What entities were ‘measures’ taken on? What measures have been employed 

and how? By what processes did some things get to be recorded and others not? What 

distortions might this cause? It is all about trying to gauge the extent to which we can 

generalize from patterns in the data to the way we think it will be in populations or processes 

that we care about. (Wild, 2017) 

 

In particular, we are on the lookout for biases that could lead us to false conclusions. 

 

1.2.2.2 Other Dimensions  Dimension 2 of Wild and Pfannkuch’s model lists Types of Thinking, 

broken out into General Types and Types Fundamental to Statistics. The General Types are 

strategic, seeking explanations, constructing and using models, and applying techniques (solving 

problems by mapping them on to problem archetypes). The Types Fundamental to Statistics listed 

are recognition of the need for data, transnumeration (changing data representations in search of 

those that trigger understanding), consideration of variation and its sources, reasoning using 

statistical models, and integrating the statistical and the contextual (information, knowledge, 

conceptions). Something that is not highlighted here is the inductive nature of statistical inference 

– extrapolation from data on a part to reach conclusions about a whole (wider reality).  

 

Dimension 3 is the interrogative cycle, a continually-operating high-frequency cycle of Generating 

(possible informational requirements, explanations, or plans of attack), Seeking (information and 

ideas), Interpreting these, Criticizing them against reference points and Judging whether to accept, 

reject, or tentatively entertain them. Grolemund and Wickham (2014) dig much deeper into this 

dimension bringing in important ideas from the cognitive literature such as schemas (mental 

models in which knowledge is stored). In very oversimplified terms, when new information 

“arrives” a relevant schema is searched for internally to which it is compared. If discrepancies are 

detected (“insights”) the schema is updated or the information is dismissed as non-credible. 

Grolemund and Wickham explore this in the context of types of information we seek and obtain in 

the process of analysing data. 

 

Dimension 4 consists of a list of personal qualities, or dispositions, successful practitioners bring 

to their problem solving: scepticism; imagination, curiosity and awareness, a propensity to seek 

deeper meaning, being logical, engagement, and perseverance. This is amplified in Hahn and 

Doganaksoy’s chapter “Characteristics of Successful Statisticians” (2012, Chapter 6). 

 



 

 

1.2.2.3 Statistical Thinking for Beginners Although it only scratches the surface, the above still 

underscores the richness and complexity of thinking involved in real-world statistical problem 

solving and provides a useful set of reference points against which researchers and teachers can 

triangulate educational experiences (“Where is …  being addressed?”). It is, however, far too 

complex for most students, particularly beginners. In discussing Wild and Pfannkuch, Moore 

(1999) asked, “What Shall We Teach Beginners?” He suggested “… we can start by mapping 

more detailed structures for the ‘Data, Analysis, Conclusions’ portion of the investigative cycle, 

that is, for conceptual content currently central to elementary instruction. Here is an example of 

such a structure:  

 
When you first examine a set of data, (1) begin by graphing the data and interpreting what 

you see; (2) look for overall patterns and for striking deviations from those patterns, and seek 

explanations in the problem context; (3) based on examination of the data, choose appropriate 

numerical descriptions of specific aspects; (4) if the overall pattern is sufficiently regular, 

seek a compact mathematical model for that pattern. (p. 251) 

 

Moore (1998) offered the following for basic critique, which complements his 1999 list of 

strategies with “Data beat anecdotes” and the largely metacognitive questions, “Is this the right 

question? Does the answer make sense? Can you read a graph? Do you have filters for quantitative 

nonsense?” (p. 1258). 

 

There are great advantages in short, snappy lists as starting points. Chance’s (2002) seven habits 

(p. 4) bring in much of Moore’s lists, and the section headings are even “snappier”: “Start from the 

beginning. Understand the statistical process as a whole. Always be sceptical. Think about the 

variables involved. Always relate the data to the context. Understand (and believe) the relevance of 

statistics. Think beyond the textbook.” Grolemund and Wickham (2014, Section 5) give similar 

lists for more advanced students. Brown and Kass (2009) state, “when faced with a problem 

statement and a set of data, naïve students immediately tried to find a suitable statistical technique 

(e.g., chi-squared, t-test), whereas the experts began by identifying the scientific question” (p. 123). 

They highlighted three “principles of statistical thinking”:  

1. Statistical models of regularity and variability in data may be used to express 

knowledge and uncertainty about a signal in the presence of noise, via inductive 

reasoning. (p. 109) 

2. Statistical methods may be analyzed to determine how well they are likely to perform. 

(p. 109) 

3. Computational considerations help determine the way statistical problems are 

formalized. (p. 122) 

 

We conclude with the very specialised definition of Snee (1990), which is widely used in quality 

improvement for business and organisations,  

 
I define statistical thinking as thought processes, which recognize that variation is all around 

us and present in everything we do, all work is a series of interconnected processes, and 

identifying, characterizing, quantifying, controlling, and reducing variation provide 

opportunities for improvement. (p. 118) 

 

1.2.3 Relationship with Mathematics 
 

Although definitions that characterise statistics as a branch of mathematics still linger in some 

dictionaries, the separate and distinct nature of statistics as a discipline is now established. 



 

 

“Statistical thinking,” as Moore (1998) said, “is a general, fundamental, and independent mode of 

reasoning about data, variation, and chance” (p. 1257). “Statistics at its best provides methodology 

for dealing empirically with complicated and uncertain information, in a way that is both useful 

and scientifically valid” (Chambers, 1993). 

 

“Statistics is a methodological discipline. It exists not for itself but rather to offer to other fields of 

study a coherent set of ideas and tools for dealing with data” (Cobb and Moore, 1997, p. 801). To 

accomplish those ends it presses into service any tools that are of help. Mathematics contains many 

very useful tools (as does computing). Just as physics attempts to understand the physical universe 

and presses mathematics into service wherever it can help, so too statistics attempts to turn data 

into real-world insights and presses mathematics into service wherever it can help. And whereas in 

mathematics, mathematical structures can exist and be of enormous interest for their own sake, in 

statistics, mathematical structures are merely a means to an end (see also Box, 1990, paragraph 2; 

De Veaux and Velleman, 2008).   A consequence is that whereas a mathematician prefers an exact 

answer to an approximate question, an applied statistician prefers an approximate answer to an 

exact question. 

 

1.2.3.1 Role of Context  The focus of the discipline, and in particular the role of context, is also 

distinct. “Statistics is not just about the methodology in a particular application domain; it also 

focuses on how to go from the particular to the general and back to the particular again” (Fienberg, 

2014).  

 

Although mathematicians often rely on applied context both for motivation and as a source of 

problems for research, the ultimate focus in mathematical thinking is on abstract patterns: the 

context is part of the irrelevant detail that must be boiled off over the flame of abstraction in 

order to reveal the previously hidden crystal of pure structure. In mathematics, context 

obscures structure. Like mathematicians, data analysts also look for patterns, but ultimately, 

in data analysis, whether the patterns have meaning, and whether they have any value, 

depends on how the threads of those patterns interweave with the complementary threads of 

the story line. In data analysis, context provides meaning. (Cobb & Moore, 1997, p. 803; our 

emphasis)  

 

There is a constant “interplay between pattern and context” (Cobb & Moore, 1997). As for 

statistical investigations for real-world problems, the ultimate learning is new knowledge about the 

context domain – we have gone “from the particular to the general” (to enable us to use methods 

stored in our statistical repository) “and back to the particular again” (to extract the real-world 

learnings). 

 

1.2.3.2 Role of Theory  When most statisticians speak of “statistical theory” they are thinking of 

mathematical theories comprising “statistical models” and principled ways of reasoning with and 

drawing conclusions using such models. “Statistical models,” which play a core role in most 

analyses, are mathematical models that include chance or random elements incorporated in 

probability-theory terms. Perhaps the simplest example of such a model is y = µ +   where we 

think in terms of y being an attempt to measure a quantity of interest µ in the process of which we 

incur a random error  (which might be modelled as having a normal distribution, say). In the 

simple linear model: y = 0  + 1x  + , the mean value of y depends linearly on the value of an 

explanatory variable x rather than being a constant. Random terms (cf. ) model the unpredictable 

part of a process and give us ways of incorporating and working with uncertainties. “Statistical 

theory” in this sense is largely synonymous with “mathematical statistics.” 



 

 

 

"Probability theory” is a body of mathematical theory, originally motivated by games of chance 

but latterly much more by the needs of statistical modelling, which takes abstracted ideas about 

randomness, forms mathematical structures that encode these ideas and makes deductions about 

the behaviour of these structures. Statistical modellers use these structures as some of the building 

blocks that they can use in constructing their models, as with the random-error term in the very 

simple model above. Recent work by Pfannkuch et al. (2016) draws on interviews with stochastic-

modelling practitioners to explore probability modelling from a statistical education perspective. 

The paper offers a new set of (conceptual) models of this activity. Their SWAMTU model is 

basically a cycle (with some feedback). It has nodes problem Situation  Want (to know)  

Assumptions  Model  Test  Use. Models are always derived from a set of mathematical 

assumptions so that assumption checking against data is, or should be, a core part of their 

construction and use. As well as being used in statistical analysis, they are commonly used to try to 

answer “what-if” questions (e.g., “What would happen if the supermarket added another checkout 

operator?”).  Although there is much that is distinct about statistical problem solving, there is also 

much that is in common with mathematical problem solving so that statistics education researchers 

can learn a lot from work in mathematics education research, and classic works such as Schoenfeld 

(1985). 

 

When most statisticians think “theory,” they are thinking of mathematical theories that underpin 

many important practices in the Analysis and Plan stages of PPDAC. But “theory” is also 

applicable whenever we form abstracted or generalized explanations of how things work. 

Consequently, there is also theory about other elements of PPDAC, often described using tools like 

process diagrams (cf. Fig. 1.1). Grolemund and Wickham (2014) propose a theoretical model for 

the data analysis process by comparing it to the cognitive process of the human mind called 

“sensemaking.” 

 

In recent years there has also been a shift in the “balance of power” from overtly mathematical 

approaches to data analysis towards computationally-intensive approaches (e.g., using computer-

simulation-based approaches including bootstrapping and randomisation tests, flexible trend 

smoothers, and classification algorithms). Here the underlying models make much weaker 

assumptions and cannot be described in terms of simple equations. So, although “the practice of 

statistics requires mathematics for the development of its underlying theory, statistics is distinct 

from mathematics and requires many nonmathematical skills” (American Statistical Association 

Undergraduate Guidelines Workgroup, 2014, p. 8). These skills (required also by many other 

disciplines) include basic scientific thinking, computational/algorithmic thinking, 

graphical/visualisation thinking, and communication skills. 

 

So, “… how is it then that statistics came to be seen as a branch of mathematics? It makes no more 

sense to us than considering chemical engineering as a branch of mathematics” (Madigan and 

Gelman’s discussion of Brown and Kass, 2009, p. 114). The large majority of senior statisticians 

of the last half century began their academic careers as mathematics majors. Originally, 

computational capabilities were extremely limited and mathematical solutions to simplified 

problems and mathematical approximations were hugely important (Cobb, 2015). The academic 

statisticians also worked in environments where the reward systems overwhelmingly favoured 

mathematical developments. The wake-up call from “big data” and “data science” is helping nudge 

statistics back toward its earlier, and much more holistic, roots in broad scientific inference. 

Though the elements of all of this, and their champions, have always been there, in universities the 

broader practical dimensions became overshadowed and underappreciated.  



 

 

 
 

1.3 Why Learning Statistics Is More Important Than Ever 
 

In today’s data-rich world, all educated people need to understand statistical ideas and conclusions, 

to enrich both their professional and personal lives. The widespread availability of interesting and 

complex data sets, and increasingly easy access to user-friendly visualization and analysis software 

mean that anyone can play with data to ask and answer interesting questions. For example, Wild’s 

Visual Inference Tools (https://www.stat.auckland.ac.nz/~wild/VIT/) and iNZight software 

(https://www.stat.auckland.ac.nz/~wild/iNZight) allow anyone to explore data sets of their own 

choosing.  The CODAP (Common Online Data Analysis Platform, 

https://concord.org/projects/codap) provides a straightforward platform for web-based data 

analysis, as does iNZight Lite (http://lite.docker.stat.auckland.ac.nz/). 

 

Statistical methods are used in almost all knowledge areas and increasingly are used by businesses, 

governments, health practitioners, other professionals, and individuals to make better decisions. 

Conclusions and advice based on statistical methods abound in the media. Some of the thinking 

used for decision-making based on quantitative data carries over into decision-making involving 

uncertainty in daily life even when quantitative data are not available. For these reasons, probably 

no academic subject is more useful to both working professionals and informed citizens on a daily 

basis than statistics.  

 

The rapid development of data science and expansion of choices for what to teach in statistics 

courses provides challenges for statistics educators in determining learning goals, and 

opportunities for statistics education researchers to explore what instructional methods can best 

achieve those goals. For example, in articles that appeared almost simultaneously, both Cobb 

(2015) and Ridgway (2015) argue that we need a major overhaul of the statistics curriculum, 

particularly the introductory course and the undergraduate curriculum. To ignore the impact of the 

widespread availability of data and user-friendly software to play with data would lead to 

marginalization of statistics within the expanding world of data science. 

 

In this section we provide some motivation for why everyone should study statistics, and some 

examples of what could be useful for various constituencies. Statistics educators should keep these 

ideas in mind, and make sure to emphasize the usefulness of statistics when they teach, especially 

for students who are studying statistics for the first (and possibly only) time. Statistics education 

researchers should study how we can train students to use statistical reasoning throughout their 

lives to ask and answer questions relevant to them.  

 

The ideal type and amount of statistical knowledge needed by an individual depends on whether 

the person will eventually be working with data as a professional researcher (a producer of 

statistical studies), interpreting statistical results for others (a professional user of statistics), or 

simply needing to understand how to use data and interpret statistical information in life (an 

educated consumer of data and statistics).  

 

Professional users include health workers (who need to understand results of medical studies and 

translate them into information for patients), financial advisors (who need to understand trends and 

variability in economic data), and politicians (who need to understand scientific data as it relates to 

public policy, as well as how to conduct and understand surveys and polls). Producers of statistical 

https://www.stat.auckland.ac.nz/~wild/VIT/
https://www.stat.auckland.ac.nz/~wild/iNZight
https://concord.org/projects/codap
http://lite.docker.stat.auckland.ac.nz/


 

 

studies are likely to take several courses in statistical methods, and will not be the focus of this 

chapter (see Section 4 for more discussion).  

 

Educated consumers include pretty much everyone else in a modern society.  They need to 

understand how and what valid conclusions can be made from statistical studies and how statistical 

thinking can be used as a tool for answering questions and making decisions, with or without 

quantitative data. 

 

 

1.3.1 What Professional Users of Statistics Need to Know 
 

Many professionals do not need to know how to carry out their own research studies, but they do 

need to know how to interpret results of statistical studies and explain them to patients and 

customers. In business applications, professionals such as marketing managers may need to 

understand the results generated by statisticians within their own companies. In this section we 

provide a few examples of why professional users of statistics need to understand basic statistical 

ideas beyond what is needed for the general consumer. 

 

Commonly used statistical methods differ somewhat across disciplines, but there are some basic 

ideas that apply to almost all of them. One of the most fundamental concepts is the importance of 

variability and a distribution of values. The first example illustrates how that concept is important 

for financial advisors and their clients. 

 

Example 1: How Much Should You Save? Income and Expense Volatility 

In 2015 the financial giant JP Morgan Chase announced the establishment of a research 

institute to utilize the massive and proprietary set of financial data it owns to answer 

questions about consumer finances. The inaugural report, published in May 2015 (Farrell and 

Greig, 2015), examined financial data for 100,000 individuals randomly selected from a 2.5 

million person subset of Chase customers who met specific criteria for bank and credit card 

use. One of the most important and publicized findings (e.g., Applebaum, 2015) was that 

household income and expenditures both vary widely from month to month, and not 

necessarily in the same direction. For instance, the report stated that “41% of individuals 

experienced fluctuations in income of more than 30% on a month-to-month basis” (p. 8) and 

“a full 60% of people experienced average monthly changes in consumption of greater than 

30%” (p. 9). Additionally, the report found that changes in income and consumption don’t 

occur in tandem, so it isn’t that consumers are spending more in months when they earn 

more. Why is this important information? Financial planners routinely advise clients to have 

liquid savings equivalent to three to six months of income. But in some cases, that may not 

be enough because of the volatility in both income and expenditures, and the possibility that 

they can occur in opposite directions. One of three main findings of the report was “The 

typical individual did not have a sufficient financial buffer to weather the degree of income 

and consumption volatility that we observed in our data.” (p. 15)  

 

A concept related to variability is that individuals are not all “typical.” In the previous example, 

individual consumers should know whether the warnings in the report are likely to apply to them 

based on how secure their income is, what major expenditures they are likely to encounter, and 

what resources they have to weather financial storms. Knowing that the “typical” or “average” 

consumer needs to stash away three to six months of income as savings should lead to questions 



 

 

about how each individual’s circumstances might lead to recommendations that differ from that 

advice. 

 

Baldi and Utts (2015) discuss topics and examples that are important for future health practitioners 

to learn in their introductory, and possibly only, statistics course. One central concept is that of 

natural variability and the role it plays in defining disease and “abnormal” health measurements. 

The next example, adapted from Baldi and Utts, illustrates how knowledge about variability and a 

distribution of values can help physicians and their patients put medical test results in perspective. 

 

Example 2: High Cholesterol for (Almost) All 

Medical guidelines routinely change based on research results, and statistical studies often 

lead pharmaceutical companies and regulatory agencies to change their advice to medical 

practitioners about what constitutes pathology. According to the United States National 

Institutes of Health, high cholesterol is defined as having total blood cholesterol of 240 mg/dl 

or above, and elevated or borderline high cholesterol is defined as between 200 and 240 

mg/dl. (http://www.nhlbi.nih.gov/health/health-topics/topics/hbc). Suppose you are 

diagnosed with high or borderline high cholesterol and your doctor recommends that you 

take statin drugs to lower it. You might be interested in knowing what percentage of the 

population is in the same situation. Using data from the World Health Organization (Lawes 

et al, 2004), we can model the total cholesterol levels of women aged 45 to 59 years old in 

the United States using a normal distribution with mean of about 216 mg/dl and standard 

deviation of about 42 mg/dl. Figure 1.2 illustrates this distribution. As shown in the figure, 

about 35% of women in this age group have high cholesterol, and an additional 36.5% have 

borderline high values. That means that only about 28.5% do not have this problem! Should 

more than 70% of middle-aged women be taking statin drugs? Given that there are risk 

associated with high cholesterol and side effects associated with taking statin drugs, this is a 

discussion for individuals to have with their doctors. But it would be helpful for both of them 

to understand that more than a majority of the population fall into these cholesterol risk 

categories. Additional statistical reasoning tools (beyond the scope of this example) are 

needed to help physicians and consumers understand the tradeoff in risks associated with 

taking statin drugs or not. But this example illustrates the importance of understanding the 

concept of a distribution of values, and how it relates to decisions individuals need to make. 

 



 

 

 
Fig. 1.2: Cholesterol values for women aged 45 to 59; mean ≈ 216 mg/dl and s.d. ≈ 42 mg/dl 

 

 

1.3.2 What Educated Consumers of Data and Statistics Need to Know 
 

The majority of students who take a statistics course will never use statistics in their professional 

lives, but quite often they will encounter situations for which they could utilize data and statistical 

information to make informed decisions. Teachers of introductory statistics should provide 

instruction that will help people utilize that information. In the papers by Ridgway (2015), Baldi 

and Utts (2015), Utts (2003), and Utts (2010), more than a dozen important topics are described, 

with multiple examples. A few of them were covered in the previous section on what professional 

users of statistics need to know. Here, we list more of them and explain why they are important for 

consumers. Examples to illustrate each of these can be found in the references mentioned here, as 

well as in textbooks with a focus on statistical literacy such as Cohn and Cope (2011), Hand 

(2014), Moore and Notz (2012), and Utts (2014). A resource for current examples is the website 

http://www.stats.org, a joint venture of the American Statistical Association and Sense About 

Science USA. 

 

1. Unwarranted conclusions based on observational studies 

 

The media have improved in the interpretation of observational studies in recent years, but reports 

implying causation based on observational studies are still quite common. Students should learn to 

recognize observational studies and know that cause and effect conclusions cannot be made based 

on them. Here are some recent examples of misleading headlines based on observational studies or 

meta-analyses of them: 

 

 “6 cups a day? Coffee lovers less likely to die, study finds” (NBC News, May 16, 2012; 

http://vitals.nbcnews.com/_news/2012/05/16/11704493-6-cups-a-day-coffee-lovers-less-

likely-to-die-study-finds?lite) 

 “Citrus fruits lower women's stroke risk” (Live Science, February 22, 2012;   

http://www.livescience.com/18608-citrus-fruits-stroke-risk.html) 

Cholesterol (mg/dl)
200

36.5%

240216

high

Borderline

35%

 

High

28.5%

 

"Normal"

http://www.stats.org/
http://vitals.nbcnews.com/_news/2012/05/16/11704493-6-cups-a-day-coffee-lovers-less-likely-to-die-study-finds?lite
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 “Walk faster and you just might live longer” (NBC News, January 4, 2011; 

http://www.nbcnews.com/id/40914372/ns/health-fitness/t/walk-faster-you-just-might-

live-longer/#.Vc-yHvlViko) 

 

In many cases those conducting the research cautioned against making a causal conclusion, but the 

headlines are what people read and remember. Students should always question whether a causal 

conclusion is warranted, and should know how to answer that question. 

 

2. Statistical significance versus practical importance 

 

Ideally, students would learn the correct interpretation of p-values. (See Nuzzo, 2014, for a non-

technical explanation of p-values.) But the most common misinterpretation, that the p-value 

measures the probability that chance alone can explain observed results, is difficult to overcome.  . 

So students at least should learn the importance of distinguishing between statistical significance 

and practical importance. The easiest way to illustrate the difference is to look at a variety of 

studies that have small p-values, and then look at a confidence interval for the population 

parameter in each case. Although p-values are often used in situations that don’t involve an easily 

interpretable parameter (for which a confidence interval could be computed), showing examples 

for which there is an interpretable parameter will make the point about statistical versus practical 

significance, and especially about the importance of sample size.  

 

In the previously referenced article, Nuzzo (2014) provides an example of a study claiming that 

those who meet online have happier marriages (p < 0.001) and lower divorce rates (p < 0.002) than 

those who meet offline. The p-values of less than 0.001 and 0.002 look impressive, but on a 7-

point scale the average “happiness” ratings for the two groups were 5.48 and 5.64, and the divorce 

rates were 7.67% and 5.96%.  The impressive p-values resulted from the large sample size of over 

19,000 people. 

 

Aspects such as the size of the study and how that impacts the p-value are important if students are 

to understand the distinction between statistical significance and practical importance. Introducing 

the concept of “effect size” can help make this point, as illustrated in the next section.  

 
 

3. The difference between no effect and no statistically significant effect 

 

Studies that find no statistically significant effect may never make it into publication because they 

are not thought to have found anything of interest and are not newsworthy. But often media reports 

will mention an “unsuccessful replication” of an earlier study, and report it as if it contradicts the 

earlier result. Consumers should understand that there are multiple reasons for this apparent 

contradiction, and they do not all imply a real contradiction. 

 

Consider the following scenario, called the “hypothesis testing paradox” (Utts & Heckard, 2015).  

A researcher conducts a t-test for a population mean based on a sample of n = 100 observations, 

obtaining a result of t = 2.50 and p = 0.014, so the null hypothesis is rejected. The experimenter 

decides to repeat the experiment with n = 25 observations to verify the result, but finds 

disappointingly that the result is t = 1.25, p = 0.22, and so she cannot reject the null hypothesis. 

The effect seems to have disappeared. To salvage the situation, she decides to combine the data, so 

now n = 125. Based on the combined data, t = 2.80, p-value = 0.006! How could a second study 

http://www.nbcnews.com/id/40914372/ns/health-fitness/t/walk-faster-you-just-might-live-longer/%23.Vc-yHvlViko
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that seemed to diminish the statistically significant result of the first study somehow make the 

result stronger when combined with the first study? 

The paradox is that the second study alone did not replicate the finding of statistical significance, 

but when combined with the first study the effect seems even stronger than the first study alone, 

with the p-value going from 0.014 to 0.006. The problem of course is that the test statistic and p-

value depend on the sample size. In fact in this example, the effect size (measured as sx /)( 0 ) 

is the same in both studies. It is the sample size that creates the difference in t and the p-value. See 

Table 1.1 for a numerical explanation. 

Table 1.1: Hypothetical example of the relationships among sample size, test statistic and p-value.  

The same effect size yields a statistically significant result for a larger study. 

Study n  Test statistic t p-value 

1 100 0.25 2.50 .014 

2 25 0.25 1.25 .22 

Combined 125 0.25 2.80 .006 

 

 

4. Sources of potential bias in studies and surveys, and the population to which results apply 

 

As fewer households maintain landline telephones and caller ID makes it easy to ignore calls from 

unfamiliar numbers, it is becoming increasingly difficult to get representative samples for surveys 

and other statistical studies. Consequently, in many cases the results of surveys and other studies 

may not reflect the population of interest. According to Silver (2014), “Even polls that make every 

effort to contact a representative sample of voters now get no more than 10 percent to complete 

their surveys — down from about 35 percent in the 1990s” (para. 1).  

 

Lack of response is just one of many sources of bias that can enter into surveys and other studies. 

Other sources of bias include poor and/or intentionally biased wording of questions, the order in 

which questions are asked, who is asking, and whether the topic is one for which people are 

inclined to lie (for instance, to appear to conform to social norms). When reading results of surveys 

it’s important to know exactly what was asked, who asked, whether questions were asked in 

person, by mail, phone or online, and whether special interest groups were involved in any way 

that could affect the results. Cohn and Cope (2011) provide a detailed list of questions journalists 

should ask when covering these kinds of studies, but the list is relevant to anyone interested in 

learning more about how to detect bias in survey results. 

 

5. Multiple testing and selective reporting 

 

Almost all studies measure multiple explanatory and/or response variables, and therefore conduct 

multiple statistical tests to find out which variables are related. It is very common for the media to 

report the findings that happen to be statistically significant without mentioning that they were part 

of a larger study. If the original research report did not correct the reported results for multiple 

testing, the statistically significant findings could easily be spurious. Given that 20 independent 

tests with true null hypotheses are expected to yield one with statistical significance, it is not 

surprising that false claims make their way into the media. Students should learn to ask how many 

different tests were conducted in a study, and whether the statistical results were adjusted for 

sx /)( 0



 

 

multiple testing. Ioannidis (2005) illustrates this problem and related issues with many examples in 

his article “Why most published research findings are false.”  

 

6. Interpreting relative risk, absolute risk, personal risk, and risk tradeoffs 

 

Knowing how to think about risk can help consumers in many ways. Education research has 

shown that teaching risk and relative risk in terms of frequencies instead of probabilities will make 

them easier for most students to understand, and giving baseline risks in addition to relative risks 

will allow people to make more informed decisions (Gigerenzer et al., 2008). For instance, 

students understand the idea that 3 out of 1000 people may die from a certain treatment more 

readily than they understand that 0.003 or 0.3% of those treated may die. Saying that a certain 

behavior doubles your probability (or risk) of cancer from 0.003 to 0.006 is not easy for most 

people to understand, but saying that the behavior increases the number of cases of cancer in 

people similar to them from 3 in 1000 to 6 in 1000 is much easier to understand. And reporting 

frequencies instead of proportions makes the role of baseline risk much more clear. Most people 

can understand that an increase from 3 in 1000 to 6 in 1000 is different than an increase from 30 in 

1000 to 60 in 1000, and will immediately recognize what the baseline risk is in each case.  

 

Another important feature of risk to explain to students is that changing one behavior to avoid risk 

may lead to increasing risk of a different outcome. For instance, taking drugs to reduce blood 

pressure or cholesterol may increase the risk of other medical problems. Having a mammogram to 

reduce the risk of undetected breast cancer may increase the risk of the effects of radiation, or add 

a psychological risk of having a false positive result, and the accompanying stress. A striking 

example by Gigerenzer et al. (2008), described by Utts (2010), illustrated how a media scare 

associated with birth control pills in the United Kingdom resulted in reduced use of the pills, but 

led to large increases in abortions and teen pregnancies, which had much higher risks than the use 

of the pills would have had. Students should learn to view behavior changes that reduce risk in the 

broader context of risk trade-offs.  

 

7. Conditional probability and “confusion of the inverse” 

 

Psychologists know that people have very poor intuition about probability. One example is called 

“confusion of the inverse,” in which people confuse conditional probability in one direction with 

conditional probability in the other direction. A classic example is confusing the probability of a 

positive test result given that you have a disease with the probability of having the disease, given a 

positive test result. The two probabilities can of course be vastly different, and this confusion has 

undoubtedly led to much unnecessary angst in people who receive a false positive medical test 

result. In one scenario, Eddy (1982) showed that physicians gave estimates of the probability of 

having breast cancer given a positive mammogram that were 10 times too high, close to 0.75 when 

the actual probability was 0.075. 

 

Another example of this confusion is in the courtroom, where the probability of guilt given 

particular evidence is not the same as the probability of that evidence, given that the person is 

guilty. Again these can be vastly different, and juries need to recognize the difference. Similar to 

explanations of relative risk, conditional probabilities are easier to understand using frequencies 

instead of proportions or probabilities. One of the easiest ways to illustrate conditional 

probabilities in both directions, and how they differ, is through the use of a “hypothetical hundred 

thousand” table. See Utts (2010) for an example, as well as for other examples of how 

psychological influences can affect probability estimates and interpretation.  



 

 

 

1.3.3 What Decision Makers Need to Know 
 

Statistical ideas and methods provide many tools for making decisions in life, especially decisions 

that involve trade-offs. Previously we discussed how competing risks often need to be taken into 

account when making decisions. We now discuss some other ways in which statistical ideas can 

help with making decisions when trade-offs are involved. 

 

1.3.3.1 Using expected values to make decisions  Insurance companies, casinos, lottery agencies 

and sellers of extended warranties all rely on expected values, and can exploit consumers who do 

not understand them. In all of those cases consumers overall are the losers, but sometimes the 

protection (as with insurance and extended warranties) is worth the loss. The important point for 

consumers is to understand how to figure out when that is true. As an example, if you buy an 

appliance, should you buy the extended warranty? If you have sufficient income or financial 

reserves to have it fixed or replaced, the answer is probably not. In the long run, you will lose 

money if you often buy insurance and extended warranties. But an individual consumer does not 

get the benefit of “the long run” in something like the purchase of a house or car, so in those cases 

it may be worth having the insurance in the (small probability) event of a disaster. Also, if you are 

a real klutz and tend to break things, you might actually come out ahead with certain extended 

warranties. Students should understand these issues so they can make informed choices. 

 

Example 3: Should you Pay in Advance? 

 

Here is a simple example of where knowledge of expected value could be useful in making a 

decision (Utts, 2014, Exercise 17.29). Suppose you are planning to stay at a hotel a month 

from now but are not 100% sure you will take the trip. The hotel offers two payment choices. 

You can pay an “advance purchase” price of $85 now, nonrefundable. Or, you can reserve a 

room and pay $100 when you go, but not pay anything if you decide not to go. Which choice 

should you make? With the advance purchase, the “expected value” of what you will pay is 

$85, because the probability is 1.0 that you will pay that amount. Define p to be the 

probability that you will take the trip. If you don’t use the advance purchase option, the 

expected value for what you will pay is ($100)(p) + ($0)(1 – p) = $100p. Note that $100p is 

less than $85 if p is less than 0.85. So if you think the probability of taking the trip is less 

than 0.85, the advance purchase is not a good idea, but if you think the probability is higher 

than 0.85, the expected value is lower by taking advantage of the advance purchase.  

 

1.3.3.2 Using the Hypothesis Testing Framework to Make Decisions  In addition to the 

technical aspects of statistical studies, the reasoning used for hypothesis testing can be useful in 

making decisions even without quantitative data. Consider the following example from the life of 

one of the authors. 

 

Example 4: Making a Tough Decision 

The empty wrapper for a chocolate bar that someone in your household remembers partially 

eating is sitting on a table, carelessly left where your dog could find it. The human involved 

cannot remember whether he ate the whole chocolate bar or left half of it exposed on the 

table. You fear that the dog consumed the remainder of the chocolate, an indulgence that 

could be fatal to the dog. Should you rush to the veterinarian to have your dog’s stomach 

pumped?  

 



 

 

We can think about this decision in the framework of hypothesis testing, and look at the 

equivalent of Type 1 and Type 2 errors when considering the decision, as shown in Table 

1.2. The actual decision will depend on how likely you think the two hypotheses are, but 

illustrating the possible choices and their consequences can be informative and helpful in 

making a decision. 

 

Table 1.2: Did the dog eat the chocolate? 

 
 DECISION 

HYPOTHESIS Dog did not eat the chocolate Dog did eat the chocolate 

Null: Dog did not 

eat the chocolate 

No trip to veterinarian; OK Type 1 error: Go to vet; 

dog has stomach pumped needlessly  

Alternative: Dog did 

eat the chocolate 

Type 2 error: Do not go to vet. 

Dog could die 

Go to vet; thank goodness you 

had stomach pumped 

 

In this example, if there was even a relatively small chance that the dog ate the chocolate most 

dog-owners would be likely to take the dog to the vet for an evaluation. In general, the decision 

would be based on the seriousness of the consequences of the two types of errors. Laying the 

choices out in this kind of table makes those consequences more clear. 

 

1.3.4 Final Remarks about the Importance of Statistics 
 

It is hard to predict the future of data science and statistics, as resources become available that 

allow easy access to data and methods for visualizing and analyzing them. As eminent statistician 

Brad Efron noted, “Those who ignore statistics are condemned to reinvent it” (attributed to Brad 

Efron by Friedman, 2001, p. 6), and as Wild (2015) notes, “their ignorance can do real damage in 

the meantime” (p. 1).  Statistics educators have a grave responsibility and an exciting opportunity 

to make sure that everyone learns how useful statistics can be. Statistics education researchers have 

their work cut out for them in figuring out how best to convey these ideas in ways that are useful 

and that will allow students to continue to make informed decisions throughout life. 
 

 

1.4 Where Statistics is Heading 
 

1.4.1 An Exciting Time to be a Statistician 
 

This is an exciting time to be a statistician.  Interest in the discipline of statistics and the analysis of 

data is booming.  The amount of information collected in our increasingly data-centered society is 

staggering.  Statistical expertise is more valuable than ever, with society and employers clamoring 

for graduates with the ability to blend knowledge of statistics, data management, computing, and 

visualization to help make better decisions.  But with the opportunities afforded by this rich 

information come threats for statistics as a discipline.  What does the future hold?  What do we 

need to be addressing to ensure that students are developing the statistical skills necessary?   

 

Speaking of the recent availability of a vast flood of data is not hyperbole.  George Lee of 

Goldman Sachs estimates that 90% of the world’s data have been created in the last two years 

(http://www.goldmansachs.com/our-thinking/trends-in-our-business). The 2013 Future of Statistics 

(London) report (http://bit.ly/londonreport) enumerates examples such as astronomy, where new 

telescopes will generate a petabyte of data each day and commercial databases at social media 

http://www.goldmansachs.com/our-thinking/trends-in-our-business
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companies such as Facebook, which generate 500 terabytes per day.  United States President 

Barack Obama signed an Open Data Executive Order in 2013 

(https://www.whitehouse.gov/sites/default/files/microsites/ostp/2013opendata.pdf) that called for 

data on health, energy, education, safety, finance, and global development to be made machine 

accessible to “generate new products and services, build businesses, and create jobs,” and this has 

led to increased access to sophisticated and detailed information.   

 

These increasingly diverse data are being used to make decisions in all realms of society.  Consider 

the theme for the AAAS annual meeting in 2015 (Innovations, Information, and Imaging): 

“Science and technology are being transformed by new ways to collect and use information. 

Progress in all fields is increasingly driven by the ability to organize, visualize, and analyze data” 

(http://meetings.aaas.org/program/meeting-theme).   

 

Planning a trip to New York City (NYC)? It’s straightforward to download and analyze data on all 

commercial flights in the United States since 1987 (180 million records, 

http://www.amherst.edu/~nhorton/precursors), fourteen million taxi rides in 2013 

 (http://www.andresmh.com/nyctaxitrips/) and over a billion records for 2009-2015 

(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml), millions of Citi Bike rentals 

(http://www.citibikenyc.com/system-data), and restaurant violations 

(http://www.nyc.gov/html/doh/html/services/restaurant-inspection.shtml).  Useful information of 

this type is widely available for many other large cities, governments, and domains.  

 

It’s worth noting that although much is said about “big data,” none of these NYC examples 

qualify. A typical definition of “big data” requires datasets with sizes that are difficult to process in 

a timely fashion using a typical workflow.  The NYC examples have a modest Volume (the first of 

the 3V's model for describing big data 

(http://web.archive.org/web/20110710043533/http://www.gartner.com/it/page.jsp?id=1731916) 

but low Velocity and modest Variety (forms of data not easily stored in a rectangular array).  

Though issues of “big data” are important, many more challenges and opportunities are available 

for smaller scale information. 

 

The development of new and easier to use computational tools (many of which are open-source 

with less barrier to adoption) has spurred the analysis of these new data sources.  Recent efforts 

include general frameworks for data manipulation (Wickham, 2014), improved access to high 

performance database systems (e.g., 

http://cran.rstudio.com/web/packages/dplyr/vignettes/databases.html), and sophisticated interfaces 

for data scraping and related web technologies (e.g., Nolan & Temple Lang, 2014). A number of 

instructors have taken heed of the advice of those working to incorporate data wrangling and 

management skills early in the curriculum (Carver & Stevens, 2014).  

 

1.4.2 A Challenging Time for Statistics 
 

Although this is undoubtedly an exciting time to be a statistician, there are a number of challenges 

that loom. The demand for quantitative skills is clearly there. The widely cited McKinsey report 

(http://tinyurl.com/mckinsey-nextfrontier) described the potential shortage of hundreds of 

thousands of workers with the skills to make sense of the enormous amount of information now 

available. But where will the hundreds of thousands of new workers anticipated by the McKinsey 

report and others come from? Graduates of undergraduate statistics programs will be a small 

fraction (even if the growth seen in the recent decade continues or accelerates).  Increased supply 
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http://www.andresmh.com/nyctaxitrips/
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.citibikenyc.com/system-data
http://www.nyc.gov/html/doh/html/services/restaurant-inspection.shtml
http://web.archive.org/web/20110710043533/http:/www.gartner.com/it/page.jsp?id=1731916
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is unlikely to be solved by an influx of new statistics doctoral students; while the number of 

doctoral graduates is slowly increasing, growth is insufficient to meet demand for new positions in 

industry, government, and academia.   

 

Where else can these skilled graduates be found?  If they aren't produced by statistics programs, 

where will they come from? The London report describes the need for data scientists, the exact 

definition of which is elusive and very much a matter of debate-and raises important questions 

about the identity and role of statisticians (Horton, 2015; Wasserstein, 2015).  What is meant by 

data science?  What skills are required?  What training is needed to be able to function in these 

new positions?  What role does statistics have in this new arena? How can it be ensured that 

critical statistical messages be transmitted to students educated in other types of program that feed 

the data-science shortfall?  

 

A widely read Computing Research Association white paper on the challenges and opportunities 

with “Big Data” starts in an encouraging manner: “The promise of data-driven decision-making is 

now being recognized broadly, and there is growing enthusiasm for the notion of ‘Big Data’” 

(http://www.cra.org/ccc/files/docs/init/bigdatawhitepaper.pdf).  But it is disconcerting that the first 

mention of statistics is on the sixth page of the report: “Methods for querying and mining Big Data 

are fundamentally different from traditional statistical analysis on small samples.”  The remaining 

references include statistics in passing as a bag of tricks (but not central to the use of data to inform 

decision-making).   

 

In his video introduction to the keynote for the Strata+Hadoop Big Data Conference in 2015, 

United States President Barack Obama stated that “understanding and innovating with data has the 

potential to change how we do almost anything for the better.” We applaud these sentiments.  

However, the fact that “statistics” was not mentioned in the presentation (or in many media 

depictions of this new and growing field) is a serious concern.    

 

As another example of the challenges for the role of statistics in this era of “Big Data,” consider 

the new Advanced Placement Computer Science Principles course, offered for the first time in the 

Fall of 2016 (https://advancesinap.collegeboard.org/stem/computer-science-principles).  This 

course focuses on the development of foundational computing skills, programming literacy, and an 

understanding of the impact of computing applications.  It includes “creativity” and “data and 

information” as two of seven “big ideas” that underlie the curriculum.  The description of 

creativity includes discussion of how “computing facilitates exploration and the creation of 

computational artifacts and new knowledge that help people solve personal, societal, and global 

problems.”   

 

Big idea 3 is subtitled “Data and information facilitate the creation of knowledge.”  The Course 

Description states:  

Computing enables and empowers new methods of information processing, driving 

monumental change across many disciplines — from art to business to science. Managing 

and interpreting an overwhelming amount of raw data is part of the foundation of our 

information society and economy. People use computers and computation to translate, 

process, and visualize raw data and to create information. Computation and computer science 

facilitate and enable new understanding of data and information that contributes knowledge 

to the world. Students in this course work with data using a variety of computational tools 

and techniques to better understand the many ways in which data is transformed into 

information and knowledge. (p. 19) 

http://www.cra.org/ccc/files/docs/init/bigdatawhitepaper.pdf
https://advancesinap.collegeboard.org/stem/computer-science-principles


 

 

 

Learning Objective 3.1.1 describes “use of computers to process information, find patterns, and 

test hypotheses about digitally processed information to gain insight and knowledge.”  This 

objective feels more expansive than the entire Advanced Placement Statistics course, where 

students are expected to “describe patterns and departures from patterns; plan and conduct a study; 

explore random phenomena using probability and simulation; and estimate population parameters 

and test hypotheses” (http://media.collegeboard.com/digitalServices/pdf/ap/ap-course-

overviews/ap-statistics-course-overview.pdf).   

 

While the success of its implementation remains to be seen, the Advanced Placement Computer 

Science Principles course promises an expansiveness of vision and pregnant sense of possibility 

for personal lives and the wider world. This is something that statistics education needs to learn 

from. The London report warned that unless statisticians engage in related areas such as 

computation and data-related skills that are perhaps less familiar there is a potential for the 

discipline to miss out on the important scientific developments of the 21st century. 

 

What are the areas where statistics may need to adapt to be relevant to data science?  Technology 

is one key realm.  While the Guidelines for Assessment and Instruction in Statistics Education 

(GAISE) K-12 and College reports (http://www.amstat.org/education/gaise) encouraged the use of 

technology (which, on a more positive note, is now widespread in most courses), hundreds of 

thousands of high school students still use calculators rather than computers for their analyses, 

limiting their ability to move beyond simple calculations or gain any sense of realistic workflows 

that they might encounter in the real world. But much worse, it also narrowly constricts their 

vision of what statistics is and can be, and walls out the huge potential of the visual sense for 

gaining insights from data.  This is certainly not the technology being used by data scientists (or 

proposed for the new Advanced Placement Computer Science Principles course). 

 

1.4.3 Where Are We Headed? 
 

The growth of data science as a discipline presents both opportunities and challenges for 

statisticians and statistical educators (Ridgway, 2015).  Data scientists are being hired by 

employers looking for innovative problem solvers with expertise in programming, statistical 

modeling, machine learning, and strong communication skills (Rodriguez, 2013).  

 

Computer scientists bring useful skills and approaches to tackle the analysis of large, complex 

datasets.  Statisticians bring important expertise in terms of the understanding of variability and 

bias to help ensure that conclusions are justified.  In addition to “big data,” increasingly 

sophisticated probabilistic (stochastic) models are being developed, for example in areas such as 

genetics, ecology and climate science. Data science is often described as a “team sport.” The 

complementary skills from many historically disparate disciplines need to be blended and 

augmented to ensure that data science is on a solid footing.  But this means that to be relevant in 

this age of data, statisticians must be better oriented towards data science, lest data science move 

on without statistics.  

 

The emergence of statistics as a distinct discipline, and not just as an add-on to mathematics for 

highly educated specialists, is relatively new. The growth of data science has highlighted the 

importance of computer science, and shifted the ground in terms of connections with other 

disciplines.  Some aspects of statistics are rooted in mathematics.  Moving forward, however, the 

http://media.collegeboard.com/digitalServices/pdf/ap/ap-course-overviews/ap-statistics-course-overview.pdf
http://media.collegeboard.com/digitalServices/pdf/ap/ap-course-overviews/ap-statistics-course-overview.pdf
http://www.amstat.org/education/gaise


 

 

connections to mathematics may weaken while the highly dynamic and productive interface with 

computer science is emphasized. 

 

A number of individuals have proposed creative solutions for statisticians to respond to the data 

science challenge.  In his 2012 ASA presidential address, Robert Rodriguez proposed a “big tent” 

for statistics that included anyone who uses statistics, including related disciplines such as 

analytics and data science 

(http://www.tandfonline.com/doi/abs/10.1080/01621459.2013.771010#.VRcolpPF9E8).  Brown 

and Kass (2009) warned that to remain vibrant, statistics needs to open up its view of statistical 

training.  Nolan and Temple Lang (2010) outlined a curriculum to build computational skills as a 

basis for real world analysis.  Finzer proposed a framework to establish “Data Habits of Mind” 

(2013).  Diane Lambert of Google described the need for students to be able to “think with data” 

(Horton & Hardin, 2015). 

 

The future of statistics is likely to be closely tied to aspects of data science.  Success in this realm 

will require extensive and creative changes to our secondary and tertiary curriculum, along with 

partnerships with colleagues in related disciplines. Considerable work in the realm of statistics 

education research is needed to assess approaches and methods that attempt to address these 

capacities. The American Statistical Association has been proactive in creating reports to address 

potential curriculum changes for the present; see the GAISE reports and the Curriculum Guidelines 

for Undergraduate Programs in Statistical Science (ASA Undergraduate Guidelines Working 

Group, 2014). But statistics and data science are rapidly evolving, and curriculum and pedagogical 

changes need to evolve as well to remain current.  

 

 

 

1.5 Closing Thoughts 
 

There is a growing demand for statistical skills at the same time that the field of statistics and data 

science is broadening.  Although there are many barriers to the adoption of changes in a 

curriculum that is already bulging with topics and increasingly heterogeneous in terms of 

approach, the alternative – allowing data science to proceed without statistics – is not attractive. It 

would not only diminish statistics, it would also diminish “data science” and worsen data-based 

decision making in society. It would limit the attractiveness of statistics graduates to the 

employment market, and through that, limit the attractiveness of statistics programs themselves. 

 

Cobb (2015) likened changing curricula to moving a graveyard: never easy in any circumstance.  

Developing additional capacities in statistics students takes time.  This will likely require 

approaches that provide repeated exposure and a spiraling curriculum that introduces, extends, and 

then integrates statistical and data-related skills. It includes getting students to come to grips with 

multidimensional thinking, preparing them to grapple with real-world problems and complex data, 

and providing them with skills in computation. These are challenging topics to add to the 

curriculum, but such an approach would help students to tackle more sophisticated problems and 

facilitate their ability to effectively make decisions using data.  Perhaps most importantly, it should 

also include successfully fostering an expansiveness of vision within students of the potential of 

statistics for their world and their own future lives. 

 

With so much curricular and pedagogical change under way, this is an exciting time to be involved 

in statistics education research. To chart our way into an exciting future of teaching and learning 

http://www.tandfonline.com/doi/abs/10.1080/01621459.2013.771010#.VRcolpPF9E8


 

 

that best benefits our students, there are so many important research questions to be addressed, 

including determining how best to target, structure, teach, and assess the emerging curricula. There 

has never been a wider array of interesting and important problems for statistics education 

researchers to grapple with than there is right now.  The insights within this volume should help 

spark and guide efforts in this realm for many years to come. 
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