

Pair-wise differences

Many situations where useful to look at pair-wise differences between parameters θ₁, ..., θ_l, i.e. make inferences about {θ_i - θ_j}

Pair-wise differences

Many situations where useful to look at pair-wise differences between parameters θ₁, ..., θ₁, i.e. make inferences about {θ_i - θ_i}

Pair-wise differences

• Many situations where useful to look at pair-wise differences between parameters $\theta_1, \ldots, \theta_I$, i.e. make inferences about $\{\theta_i - \theta_i\}$

Call:
<pre>svyglm(log(stay + 1) ~ age + aey + adm_typ, design = NZqhsSurv)</pre>
Survey design:
<pre>svydesign(ids=~cluster_id,strata=~stratum_id,data=NZqhs, weights=~wt)</pre>
Coefficients:
Estimate Std Error t value Pr(> t)
(Intercept) 2.010078 0.066113 30.404 0.0209 *
age 0.0091
aey -0.409 Chisq = 24.18593 on 2 dr: p= 5.5988e-06
adm_typAC -0.214357 0.033520 -6.395 0.0987 .
adm_typWN -0.394599 0.029617 -13.324 0.0477 *
adm_typZA 0.020351 0.370453 0.055 0.9651
adm_typZC -0.158209 0.027711 -5.709 0.1104
adm_typZW 0.659201 0.061893 -10.651 0.0596 .
6-level factor adm typ: AA AC WN 7A 7C 7W
The UNIVERSITY OF AUCKLAND OF CONTRACTOR AUCTINITY P. AA, AO, WIN, ZA, ZA, ZW ZCO

Upper Limit for true diff

Upper Limit for true diff

When parameters themselves meaningful

What is going on here? (10 secs)

TABLE 10.3.1 Increase in Reading Age

Both:	0.1	3.2	4.3	-0.5	1.9	3.3	2.5	3.6	0.4	2.3	-1.4	-0.7
	-0.1	0.2	0.4	0.9	1.2	1.4	1.8	1.8	2.4	3.1		
Map Only:	1.0	-0.5	1.0	0.6	0.6	1.0	1.0	-1.4	2.2	3.6	3.1	2.6
Scan Only:	1.0	3.3	1.4	-0.9	1.0	0.0	0.6					
Neither:	-0.3	-1.3	1.6	-0.4	-0.7	0.6	-1.8	-2.0	-0.7			

Kindly provided by Mary Matthews, Carmel College.

vs ... What is going on here? (10 secs)

C2010 OZCOTS

		SITE					
Туре	Head and neck	Trunk	Extremities	Row totals	-		
Hutchinson's	22	2	10	34	_		
Superficial	16	54	115	185			
Nodular	19	33	73	125			
Indeterminate	11	17	28	56			
Column Totals	68	106	226	400			
			Hutchinson Superficial Nodular Indetermina	1 2 31 3 1 2 1 4 2 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1	22 2 5.78 9.01 16 54 1.45 49.03 19 33 1.25 33.13 11 17 9.52 14.84	$ \begin{array}{r}10\\19.21\\115\\104.53\\73\\70.62\\28\\31.64\end{array} $	34 185 125 56
				Total Chi-Sq = 45 (DF = 6, P-V	68 106 5.517 + 5.454 7.590 + 0.505 0.238 + 0.000 0.230 + 0.314 Value = 0.000	226 + 4.416 + + 1.050 + + 0.080 + + 0.419 =	400 65.813

What is going on here?

vs ... What is going on here?

Benefits of visual comparison intervals

- Can see what the main stories are almost instantaneously
 - Both significance and effect-size (albeit approximate)
 - Can all happen as annotations on the most obvious plot of the data

 thus reducing abstraction
 - · Can dig for salient details subsequently

ASC2010 OZCO

"But these are just approximations" Danny Chang packaged into R library • Always exact for $I \leq 3$ Includes grabbing the right components • (includes comparing sets of 3 within subgroups) of coeff vector & covariance matrix from a Usually works remarkably well model fit, calculating MoE's for diffs and Additionally we know the answers, so ... then ... • easy to flag the occasional problem comparison: • Im() - "Significance" conflict betw. actual and approx. - Notable *length* misrepresentation betw. actual and approx. • glm() • Im() • polr() • coxph() DEPATMENT OF AUCKLAND

Origins: CW's Teaching notes at Auckland early 90s

Same forms of graphics but ...

Approximate $M_{ij} = t_{df} \operatorname{se} \left(\hat{\theta}_1 - \hat{\theta}_2 \right)$

by
$${ ilde M}_i$$

$$h_j = h_i + h_j$$
 where $h_i = t_{df} \frac{\operatorname{se}(\hat{\theta}_i)}{\sqrt{2}}$

i.e., approximate

by
$$\frac{1}{\sqrt{2}} \operatorname{se}(\hat{\theta}_1) + \frac{1}{\sqrt{2}} \operatorname{se}(\hat{\theta}_2)$$

So *independence case only* but works quite well so long as the std errors not too different (up to a factor of 5 gives err under 10%)

 $\operatorname{se}(\hat{\theta}_1 - \hat{\theta}_2) = \sqrt{\operatorname{se}(\hat{\theta}_1)^2 + \operatorname{se}(\hat{\theta}_2)^2}$

ASC2010 OZCOTS

Also related to work on Quasi variances

Menezes (1999), Firth (2000), Firth and Menezes (2003, 2004) – R package qvcalc Basic idea $v_{ii} \approx q_i + q_i$

where v_{ij} is the variance of the simple contrast $\hat{\beta}_i - \hat{\beta}_j$. The q_i 's are estimated by ML using the model

 $\log v_{ij} \sim N(\mu_{ij}, \sigma^2)$

where

$$\exp(\mu_{ij}) = q_i + q_j$$

UNIVERSITY OF AUCKLAND ARTMENT OF STATISTICS