
Big Data in R

Importing data into R: 1.75GB file
Table 1: Comparison of importing data into R

Packages Functions
Time Taken

(second) Remark/Note

base read.csv > 2,394 My machine (8GB of memory) ran
out of memory before the data could
be loaded in.

Laf laf_open_csv 49.92 4.82GB memory used by R. Cannot
read all csv files

sqldf read.csv.sql 172.97 4.23GB of memory used by R. Note
sqldf does not treat quotes as
unique, so if an entry in a column is
“a , b” (including quotes), then sqldf
will treat it as two separate items.
[“a] and [b”].

bigmemory read.big.matrix 147.62 27MB used by R. Cannot handle
factors (yet). Factor columns will be
represented as a column of NA’s. You
will need to read in the particular
factor columns using read.csv, and
then code them as integers.

Base: read.csv
rm(list=ls())

system.time({large = read.csv("large.csv")})

#Ran out of memory at 39.9 minutes - my machine has 8GB of memory - R used as much as it

could.

Package: LaF

rm(list=ls())

library(LaF) #LaF is a package for accessing large files that are too big to fit into

memory.

system.time({

 large.laf = laf_open_csv(filename = "large.csv",

column_types=c("integer","factor","numeric","numeric"), column_names = c("X", "dim",

"fact1", "fact2"), skip = 1) #Need to specify column names and types.

 large = large.laf[,]

}) #49.92 seconds, 4.82GB memory used.

Package: sqldf

rm(list=ls())

library(sqldf)

system.time({large = read.csv.sql("large.csv")}) #172.97 seconds, 4.23GB of memory used

by R

Package: bigmemory

library(bigmemory)

system.time({

 line1 = read.csv("large.csv", header = TRUE, nrows = 1)

 col.names = colnames(line1)

 read.big.matrix("large.csv", header = TRUE, backingfile = "large.backing",

descriptorfile = "large.backing.desc", col.names = col.names)

}) # 146.42 seconds, 27mb memory used.

large = attach.big.matrix("large.backing.desc")

Exporting CSV files from R:

Table 2: Memory and time taken to export data from R to a CSV file. Two separate CSV files were used as

test data, with file sizes of 23MB and 44MB respectively. The files were read into R using read.csv. The base

memory usage after the files were loaded in was 101MB and 309MB respectively. The objective was to stack

the data on itself and export it to a csv file.

Package Functions Time (seconds) Peak Memory Usage Comments

23MB file 44MB
file

23MB file 44MB file

Base R rbind & write.csv 39.34 NA 441 MB > 1270 MB This method
could not be
completed for
the 44MB file,
as R ran out of
memory.

write.table 35.74 181.41 224 MB 735 MB

rbind &
writeLines

29.81 182.54 354 MB 1172 MB Categorical
data is not
treated
properly.

bigmemory as.big.matrix &
write.big.matrix

92.55 181.66 406 MB, (210
while writing
csv)

753 MB
(174 while
writing csv)

Using
“integer” type
matricies.
Converts
categorical
data into
numerical
factor levels

ff as.ffdf &
write.table.ffdf

44.30 185.47 171 MB 398 MB

RH2 and sqldf rbind & sqldf More than
1200
seconds

Not
tested

368 MB, only
126 MB
during sqldf

Not tested Need to use
H2 method.

Use the ff package, as it is much more scalable than base R in terms of memory usage, meaning it can handle

large amounts of data. However it still takes the same amount of time as base R. Unfortunately none of the

packages explored appeared to perform any better than base R in terms of speed. In the future I may

explore accessing databases through the package RODBC.

Base R
rbind and write

 output = rbind(myDF, myDF) # bind df’s together

 system.time({write.csv(output, "test.csv")}) # write output to csv

 # write.table

 write.table(myDF, "test.csv", append = FALSE, sep = ",", row.names = FALSE)

write myDF to csv file

 write.table(myDF, "test.csv", append = TRUE, sep = ",", row.names = FALSE, col.names =

FALSE) # Write myDF to the same csv file.

#rbind and writeLines: Doesn't quote categorical data

 output = rbind(myDF, myDF)

Write to csv file manually creating the lines.

writeLines(c(do.call(function(...) paste(..., sep = ","), as.list(colnames(output))) ,

do.call(function(...) paste(..., sep = ","), as.list(output[,]))), file("test.csv"))

Package: bigmemory

Type = "integer

library(bigmemory)

n = nrow(myDF)

output.big = big.matrix(nrow = 2*n, ncol = ncol(myDF), type = "integer") #Create empty

big.matrix

#Coercing data.frame to matrix via factor level numberings

myDF.big = as.big.matrix(myDF, type = "integer")

Fill the matrix

output.big[1:n,] = myDF.big[,]

output.big[(n+1):(2*n),] = myDF.big[,]

#Write to csv file

write.big.matrix(output.big, "test.csv", sep = ",", col.names = T)

Package: ff

Package: ff: no faster but uses less memory than write.table.

library(ff)

myDF.ffdf = as.ffdf(myDF) # Convert to ff dataframe

Write first part of table

write.table.ffdf(myDF.ffdf, "test.csv", sep = ",", row.names = FALSE, col.names = T)

Append the existing file

write.table.ffdf(myDF.ffdf, "test.csv", sep = ",", row.names = FALSE, col.names = F,

append = T)

Package: sqldf

Load RH2 library first to use H2 method.

library(RH2)

library(sqldf)

#Only H2 mode can export to CSV

#Worked for small files, but took to long for large files.

x = sqldf("CALL CSVWRITE('test.csv', 'SELECT * FROM myDF')")

Calculating aggregates:

The test set of data was given to me by Kristy: 55mb, 137473 rows, 170 columns. The goal is to sum the time
series columns by two categorical variables, "Switch", and "Technology". The first four columns are
categorical data, with the remaining 166 columns consisting of integers.

Table 3: Comparison of calculating aggregates - Summing across two different factors

Packages Functions Time Taken
(second)

Remark/Note

base aggregate 100.74 This is the basic method in R

group.sums 0.78 This is my own function, and is available in “Glenn’s
Smart Functions.r”.

data.table data.table 2.06 Need to first convert the data frame to a data table
(included in time).

Accessing a data table

object
0.75 Time taken if the data table is already built.

plyr ddply with sapply 7.67
ddply with colSums 10.84

sqldf sqldf 12.62 Time taken using a temporary database (default)

14.23 Time taken using a permanent database given the
table does not already exist in the database.

4.15 Time taken using a permanent database given the
table has already been created in a previous sqldf
command.

Importing the data
names = colnames(read.csv("demand.series_ER.csv", nrows=1))

library(LaF)

system.time({

 data.laf = laf_open_csv(filename = "demand.series_ER.csv", column_types =

c(rep("factor",4),rep("integer",length(names)-4)), column_names = names, skip = 1)

 data = data.laf[,]

}) #12.51 seconds

Base R:
system.time({x0 = aggregate(data[,-(1:4)],by=list(data$Switch,data$Technology),FUN=sum)})

#100.74 seconds, baseR, sorts by Technology first

system.time({x = group.sums(data, c("Switch", "Technology"), -(1:4))}) #0.78 seconds

Package: data.table
library(data.table)

system.time({

 data.dt = data.table(data[,-c(1,2)]) # Build the data table from the original data,

including only the columns to be summed over and the grouping factors, 0.75 seconds

 x = data.dt[, lapply(.SD,sum), by=c("Switch","Technology")] # Calculate sums, 1.31

seconds

}) #2.06 seconds in total, sorts by Technology first.

Package: plyr
library(plyr)

system.time({x = ddply(data, c("Switch","Technology"), function(df) sapply(df[,-

(1:4)],sum))}) # 7.67 seconds, sorts by Switch first

system.time({x = ddply(data, c("Switch","Technology"), function(df) colSums(df[,-

(1:4)]))}) # 10.84 seconds

Package: sqldf

library(sqldf)

names = colnames(data)

system.time({

 mystring = numeric(0)

 for (i in 5:ncol(data)) mystring = paste(mystring,", sum(", names[i], ")")

 mystring = paste("Select Switch, Technology", mystring, "from data group by Switch,

Technology")

 x = sqldf(mystring)

}) # 15.57 seconds

system.time({

 mystring = numeric(0)

 for (i in 5:ncol(data)) mystring = paste(mystring,", sum(", names[i], ")")

 mystring = paste("Select Switch, Technology", mystring, "from main.data group by Switch,

Technology")

 x = sqldf(c("create index ix on data(Switch, Technology)",mystring))

}) # 12.62 seconds

With the sqldf package above, the data is being copied to a new database, then the SQL operations are being
applied to the database, then the SQL database is destroyed. If we want to use the sqldf package multiple
times, it is best to create a permanent database for efficiency.

system.time({

 mystring = numeric(0)

 for (i in 5:ncol(data)) mystring = paste(mystring,", sum(", names[i], ")")

 mystring = paste("Select Switch, Technology", mystring, "from main.data group by Switch,

Technology")

 sqldf(dbname = "mydb") #create a file named "mydb" to use as a permanent database

 x = sqldf(c("create index ix on data(Switch, Technology)",mystring), dbname = "mydb")

#Performs the operation, copying the data in mydb

}) # 14.17 seconds

#Performing the same operation again

system.time({x = sqldf(mystring, dbname = "mydb")}) # 4.17 seconds

The above results are very similar for calculating means instead of sums, and they are also similar when only
considering one grouping factor.

For example, calculating the means, using "Switch" as a grouping factor.

Table 4: Comparison of calculating aggregates - Calculating the mean across a single factor

Packages Functions Time Taken
(second)

Remark/Note

base

aggregate 107.72

This is the basic method in R

group.means 1.14 This is my own function, and is available in “Glenn’s
Smart Functions.r”.

group.fun 13.40 Another of my functions. It can only consider a single
grouping factor but the user can specify the aggregate
to calculate.

tapply embedded in

apply
31.11 This method can only consider a single grouping

factor.

data.table data.table 1.47 Need to first convert the data frame to a data table
(included in time).

Accessing a data table

object
0.42 Time taken if the data table is already built.

plyr ddply with sapply 10.28
ddply with colMeans 10.36

sqldf sqldf 12.52 Time taken using a temporary database (default)

14.17 Time taken using a permanent database given the
table does not already exist in the database.

4.34 Time taken using a permanent database given the
table has already been created in a previous sqldf
command.

LaF process.blocks ? Need to investigate further – functions are not
straight forward to write for LaF since it consider data

block by block.

Base R:
system.time({x = aggregate(data[,-(1:4)],by=list(data$Switch),FUN=mean)}) #107.72 seconds

system.time({x = apply(data[,-c(1:4)] ,2, function (x) tapply(x, data$Switch,mean))})

#31.11 seconds

system.time({x = group.fun(data[,-(1:4)],data$Switch,mean) }) #13.40 seconds, my own

function available in the attachment. Can handle any function, but only one grouping

factor

system.time({x = group.means(data, c("Switch"), -(1:4))}) #1.14 seconds, my own function

available in the attachment

Package: data.table
library(data.table)

system.time({

 data.dt = data.table(data[,-c(1,2,4)], key = "Switch") #1.05 seconds

 x = data.dt[, lapply(.SD,mean), by=c("Switch")] #0.42 seconds

})

Package: plyr
library(plyr)

system.time({x = ddply(data, .(Switch), function(df) sapply(df[,-(1:4)],mean))}) #10.28

seconds

system.time({x = ddply(data, .(Switch), function(df) colMeans(df[,-(1:4)]))})

#10.36 seconds

#1.47 seconds total

Package: sqldf

library(sqldf)

system.time({
 mystring = numeric(0)
 for (i in 5:ncol(data)) mystring = paste(mystring,", avg(", names[i], ")")
 mystring = paste("Select Switch", mystring, "from main.data group by Switch")
 x = sqldf(c("create index ix on data(Switch)",mystring))
}) # 12.52 seconds

system.time({
 mystring = numeric(0)
 for (i in 5:ncol(data)) mystring = paste(mystring,", avg(", names[i], ")")
 mystring = paste("Select Switch", mystring, "from main.data group by Switch")
 sqldf(dbname = "mydb") #create a file named "mydb" to use as a permanent database
 x = sqldf(c("create index ix on data(Switch)",mystring), dbname = "mydb") #Performs the

operation, copying the data in mydb
}) # 14.17 seconds

#Performing the same operation again
system.time({x = sqldf(mystring, dbname = "mydb")}) # 4.34 seconds

Package: LaF

Note: The LaF package has potential to do the above without loading the data into memory, but functions
are not as straight forward to write. I will explore this further at some point.

Finding subsets:

The following calculations were done a 1.75GB file (same as I used for importing data), using my own
machine with 8GB of memory. The goal is to find all observations which have dim (categorical variable) ==
"b" and fact1 (numerical variable) > 0.

Table 5: Comparison finding subsets of data

Packages Functions Time Taken
(second)

Remark/Note

base

Subset data.frame

object
3.04

This is the basic method in R

data.table data.table 3.24 Need to first convert the data frame to a data table
and set the key (included in time).

Subset data.table

object
0.00 Time taken if the data table is already built and keyed.

sqldf sqldf NA sqldf could not be used to specify an value for the
categorical variable because it was stored with
quotes.

LaF Subset LaF object 50 (approx) Subset of data obtained without loading in data

Base R

system.time({x = large[large$dim == '"b"' & large$fact1 > 0,]}) #3.04 seconds

Package: data.table

library(data.table)

system.time({

 dt = data.table(large) #1.09 seconds

 setkey(dt,dim) #2.15 seconds, these steps can be combined: dt =

data.table(large, key = "dim")

 y = dt[J('"b"')] #0 seconds, can subset on multiple factors, but need to set

multiple keys

 x = y[y$fact1 > 0,] #0 seconds

}) #3.24 seconds total.

Clearly the above is good if the data is already in a data.table format, or multiple subsets need to be
obtained, since the data table only has to be created and keyed once.

Package: sqldf - had problems using sqldf because of how the data was stored.

system.time({x = sqldf("select * from large where dim = '"b"'")} #too

many quote marks, as data was stored as "b", not b.

Package: LaF

system.time({x = huge.laf[huge.laf$fact1[] > 0 & huge.laf$dim[] == "b",]}

Subsets without loading in data, hence it takes as long as loading in the data (50

seconds), because accessing a hard drive is slow compared to accessing RAM.

Further Comments on sqldf:

The benefit of using sqldf, is that data can be permanently stored in an SQL database file. R can be restarted,
and all one has to do is tell R where the database file is, using sqldf(dbname = “mydb”). Since the database
is already created, sqldf can efficiently calculate summary statistics and find subsets of the data.
Unfortunately, more complicated analysis cannot be done in this framework, but if the database already
exists, then loading in the data should take half the time it would take using a temporary database.
Additionally, names in R that have a “.” in them (Such as column names like Jan.2012) will automatically be
changed such that the period becomes an underscore. This is because the period symbol is an operator in
SQL. Finally, sqldf does not treat quotes as being unique. For example, consider the following line from a csv
file, which has three columns:

“a , b ”, “A”, 0.5,
The sqldf package will treat it as if there were four columns | “a | b” | “A” | 0.5 | which is not ideal. So
beware when using sqldf.

Maximum object sizes in R

On all builds of R prior to version 3.0.0 (32 and 64 bit), the maximum length (number of elements) of a

vector is 2^31 - 1 ~ 2*10^9. Since the R stores matrices as vectors and dataframes as lists, the maximum

number of cells allowed in these objects is also 2^31 – 1. Therefore the product of the number of rows and

columns of a matrix or dataframe cannot exceed 2^31 – 1. The table below outlines the maximum matrix

and dataframe dimensions. The bigmemory package can overcome these limitations.

Number of rows Maximum number of columns

10,000 214, 748

100,000 21,474

1 million 2,147

10 million 214

100 million 21

1 billion 2

