
Big Data in R 
 
Importing data into R: 1.75GB file 
Table 1: Comparison of importing data into R 

Packages Functions 
Time Taken 

(second) Remark/Note 

base read.csv > 2,394 My machine (8GB of memory) ran 
out of memory before the data could 
be loaded in. 

Laf laf_open_csv 49.92 4.82GB memory used by R. Cannot 
read all csv files 

sqldf read.csv.sql 172.97 4.23GB of memory used by R. Note 
sqldf does not treat quotes as 
unique, so if an entry in a column is 
“a , b” (including quotes), then sqldf 
will treat it as two separate items. 
[“a] and [b”]. 

bigmemory read.big.matrix 147.62 27MB used by R. Cannot handle 
factors (yet). Factor columns will be 
represented as a column of NA’s. You 
will need to read in the particular 
factor columns using read.csv, and 
then code them as integers. 

 

Base: read.csv 
rm(list=ls()) 

system.time({large = read.csv("large.csv")})  

#Ran out of memory at 39.9 minutes - my machine has 8GB of memory - R used as much as it 

could. 

 

Package: LaF 
 
rm(list=ls()) 

library(LaF) #LaF is a package for accessing large files that are too big to fit into 

memory. 

system.time({ 

  large.laf = laf_open_csv(filename = "large.csv", 

column_types=c("integer","factor","numeric","numeric"), column_names = c("X", "dim", 

"fact1", "fact2"), skip = 1) #Need to specify column names and types. 

  large = large.laf[,] 

}) #49.92 seconds, 4.82GB memory used. 
 

Package: sqldf 
 
rm(list=ls()) 

library(sqldf) 

system.time({large = read.csv.sql("large.csv")})  #172.97 seconds, 4.23GB of memory used 

by R 

 

Package: bigmemory 
 
library(bigmemory) 

system.time({ 

  line1 = read.csv("large.csv", header = TRUE, nrows = 1) 

  col.names = colnames(line1) 

  read.big.matrix("large.csv", header = TRUE, backingfile = "large.backing", 

descriptorfile = "large.backing.desc", col.names = col.names) 



}) # 146.42 seconds, 27mb memory used. 

large = attach.big.matrix("large.backing.desc") 

 

Exporting CSV files from R: 

 

Table 2: Memory and time taken to export data from R to a CSV file.  Two separate CSV files were used as 

test data, with file sizes of 23MB and 44MB respectively. The files were read into R using read.csv. The base 

memory usage after the files were loaded in was 101MB and 309MB respectively. The objective was to stack 

the data on itself and export it to a csv file. 

 

Package Functions Time (seconds) Peak Memory Usage  Comments 

23MB file 44MB 
file  

23MB file 44MB file  

Base R rbind & write.csv 39.34 NA 441 MB > 1270 MB This method 
could not be 
completed for 
the 44MB file, 
as R ran out of 
memory. 

write.table 35.74 181.41 224 MB 735 MB  

rbind & 
writeLines 

29.81 182.54 354 MB 1172 MB Categorical 
data is not 
treated 
properly. 

bigmemory as.big.matrix & 
write.big.matrix 

92.55 181.66 406 MB, (210 
while writing 
csv) 

753 MB 
(174 while 
writing csv) 

Using 
“integer” type 
matricies. 
Converts 
categorical 
data into 
numerical 
factor levels 

ff as.ffdf & 
write.table.ffdf 

44.30 185.47 171 MB 398 MB  

RH2 and sqldf rbind & sqldf More than 
1200 
seconds 

Not 
tested 

368 MB, only 
126 MB 
during sqldf 

Not tested Need to use 
H2 method. 

 

Use the ff package, as it is much more scalable than base R in terms of memory usage, meaning it can handle 

large amounts of data. However it still takes the same amount of time as base R.  Unfortunately none of the 

packages explored appeared to perform any better than base R in terms of speed. In the future I may 

explore accessing databases through the package RODBC. 

 

Base R 
# rbind and write  

  output = rbind(myDF, myDF)       # bind df’s together 

  system.time({write.csv(output, "test.csv")})    # write output to csv 

 

 # write.table 

  write.table(myDF, "test.csv", append = FALSE, sep = ",", row.names = FALSE)  

# write myDF to csv file 



  write.table(myDF, "test.csv", append = TRUE, sep = ",", row.names = FALSE, col.names = 

FALSE)  # Write myDF to the same csv file. 

 

#rbind and writeLines:  Doesn't quote categorical data 

  output = rbind(myDF, myDF)       

# Write to csv file manually creating the lines. 

writeLines(c( do.call(function(...) paste(..., sep = ","), as.list(colnames(output))) , 

do.call(function(...) paste(..., sep = ","), as.list(output[,]))), file("test.csv"))  

 

Package: bigmemory 

 
# Type = "integer 

library(bigmemory) 

n = nrow(myDF) 

output.big = big.matrix(nrow = 2*n, ncol = ncol(myDF), type = "integer")  #Create empty 

big.matrix 

#Coercing data.frame to matrix via factor level numberings 

myDF.big = as.big.matrix(myDF, type = "integer") 

# Fill the matrix    

output.big[1:n,] = myDF.big[,]   

output.big[(n+1):(2*n),] = myDF.big[,] 

#Write to csv file 

write.big.matrix(output.big, "test.csv", sep = ",", col.names = T) 

 

Package: ff 

 
## Package: ff: no faster but uses less memory than write.table. 

library(ff) 

myDF.ffdf = as.ffdf(myDF) # Convert to ff dataframe 

# Write first part of table 

write.table.ffdf(myDF.ffdf, "test.csv", sep = ",", row.names = FALSE, col.names = T)  

# Append the existing file 

write.table.ffdf(myDF.ffdf, "test.csv", sep = ",", row.names = FALSE, col.names = F, 

append = T) 

 

Package: sqldf 

 
# Load RH2 library first to use H2 method. 

library(RH2) 

library(sqldf) 

#Only H2 mode can export to CSV 

#Worked for small files, but took to long for large files. 

x = sqldf("CALL CSVWRITE('test.csv', 'SELECT * FROM myDF')") 

 

Calculating aggregates:  
 
The test set of data was given to me by Kristy: 55mb, 137473 rows, 170 columns. The goal is to sum the time 
series columns by two categorical variables, "Switch", and "Technology". The first four columns are 
categorical data, with the remaining 166 columns consisting of integers. 

 
Table 3: Comparison of calculating aggregates - Summing across two different factors 

Packages Functions Time Taken 
(second) 

Remark/Note 

base aggregate 100.74 This is the basic method in R 



group.sums 0.78 This is my own function, and is available in “Glenn’s 
Smart Functions.r”. 

data.table data.table 2.06  Need to first convert the data frame to a data table 
(included in time).  

Accessing a data table 

object 
0.75 Time taken if the data table is already built. 

plyr ddply with sapply 7.67  
ddply with colSums 10.84   

sqldf sqldf 12.62 Time taken using a temporary database (default) 

14.23 Time taken using a permanent database given the 
table does not already exist in the database. 

4.15 Time taken using a permanent database given the 
table has already been created in a previous sqldf 
command. 

 
Importing the data 
names = colnames(read.csv("demand.series_ER.csv", nrows=1)) 

library(LaF) 

system.time({ 

  data.laf = laf_open_csv(filename = "demand.series_ER.csv", column_types = 

c(rep("factor",4),rep("integer",length(names)-4)), column_names = names, skip = 1) 

  data = data.laf[,] 

})   #12.51 seconds 

 
Base R: 
system.time({x0 = aggregate(data[,-(1:4)],by=list(data$Switch,data$Technology),FUN=sum)}) 

#100.74 seconds, baseR, sorts by Technology first 

 
system.time({x = group.sums(data, c("Switch", "Technology"), -(1:4))}) #0.78 seconds 

 
Package: data.table 
library(data.table) 

system.time({ 

  data.dt = data.table(data[,-c(1,2)])    # Build the data table from the original data, 

including only the columns to be summed over and the grouping factors, 0.75 seconds 

  x = data.dt[, lapply(.SD,sum), by=c("Switch","Technology")] # Calculate sums, 1.31 

seconds 

})  #2.06 seconds in total, sorts by Technology first. 

 
Package: plyr 
library(plyr) 

system.time({x = ddply(data, c("Switch","Technology"), function(df) sapply(df[,-

(1:4)],sum))}) # 7.67 seconds, sorts by Switch first 

system.time({x = ddply(data, c("Switch","Technology"), function(df) colSums(df[,-

(1:4)]))}) # 10.84 seconds 

 
Package: sqldf 
 
library(sqldf) 

 

names = colnames(data) 

system.time({ 

  mystring = numeric(0) 

  for (i in 5:ncol(data)) mystring = paste(mystring,", sum(", names[i], ")") 

  mystring = paste("Select Switch, Technology", mystring, "from data group by Switch, 

Technology") 

  x = sqldf(mystring) 

}) # 15.57 seconds 

 

system.time({ 



  mystring = numeric(0) 

  for (i in 5:ncol(data)) mystring = paste(mystring,", sum(", names[i], ")") 

  mystring = paste("Select Switch, Technology", mystring, "from main.data group by Switch, 

Technology") 

  x = sqldf(c("create index ix on data(Switch, Technology)",mystring)) 

}) # 12.62 seconds 

 
With the sqldf package above, the data is being copied to a new database, then the SQL operations are being 
applied to the database, then the SQL database is destroyed. If we want to use the sqldf package multiple 
times, it is best to create a permanent database for efficiency. 
 
system.time({ 

    mystring = numeric(0) 

  for (i in 5:ncol(data)) mystring = paste(mystring,", sum(", names[i], ")") 

  mystring = paste("Select Switch, Technology", mystring, "from main.data group by Switch, 

Technology") 

  sqldf(dbname = "mydb") #create a file named "mydb" to use as a permanent database 

   x = sqldf(c("create index ix on data(Switch, Technology)",mystring), dbname = "mydb") 

#Performs the operation, copying the data in mydb 

}) # 14.17 seconds 

 

#Performing the same operation again 

system.time({x = sqldf(mystring, dbname = "mydb")}) # 4.17 seconds 

 
The above results are very similar for calculating means instead of sums, and they are also similar when only 
considering one grouping factor. 
 
For example, calculating the means, using "Switch" as a grouping factor. 

 
Table 4: Comparison of calculating aggregates - Calculating the mean across a single factor 

Packages Functions Time Taken 
(second) 

Remark/Note 

base 
  

aggregate 107.72 
  

This is the basic method in R 

group.means 1.14 This is my own function, and is available in “Glenn’s 
Smart Functions.r”. 

group.fun 13.40 Another of my functions. It can only consider a single 
grouping factor but the user can specify the aggregate 
to calculate. 

tapply embedded in 

apply 
31.11 This method can only consider a single grouping 

factor. 

data.table data.table 1.47 Need to first convert the data frame to a data table 
(included in time).  

Accessing a data table 

object 
0.42 Time taken if the data table is already built. 

plyr ddply with sapply 10.28  
ddply with colMeans 10.36   

sqldf sqldf 12.52 Time taken using a temporary database (default) 

14.17 Time taken using a permanent database given the 
table does not already exist in the database. 

4.34 Time taken using a permanent database given the 
table has already been created in a previous sqldf 
command. 

LaF process.blocks ? Need to investigate further – functions are not 
straight forward to write for LaF since it consider data 



block by block. 

 
Base R: 
system.time({x = aggregate(data[,-(1:4)],by=list(data$Switch),FUN=mean)}) #107.72 seconds 

system.time({x = apply(data[,-c(1:4)] ,2, function (x) tapply(x, data$Switch,mean))}) 

#31.11 seconds 

system.time({x = group.fun(data[,-(1:4)],data$Switch,mean) }) #13.40 seconds, my own 

function available in the attachment. Can handle any function, but only one grouping 

factor 

system.time({x = group.means(data, c("Switch" ), -(1:4))}) #1.14 seconds, my own function 

available in the attachment 

 
Package: data.table 
library(data.table) 

system.time({ 

  data.dt = data.table(data[,-c(1,2,4)], key = "Switch")    #1.05 seconds 

  x = data.dt[, lapply(.SD,mean), by=c("Switch")]           #0.42 seconds 

}) 

  
Package: plyr 
library(plyr) 

system.time({x = ddply(data, .(Switch), function(df) sapply(df[,-(1:4)],mean))}) #10.28 

seconds 

system.time({x = ddply(data, .(Switch), function(df) colMeans(df[,-(1:4)]))})  

#10.36 seconds                                                           

#1.47 seconds total 

 
Package: sqldf 
  
library(sqldf) 
  
system.time({ 
  mystring = numeric(0) 
  for (i in 5:ncol(data)) mystring = paste(mystring,", avg(", names[i], ")") 
  mystring = paste("Select Switch", mystring, "from main.data group by Switch") 
  x = sqldf(c("create index ix on data(Switch)",mystring)) 
}) # 12.52 seconds 
  
system.time({ 
    mystring = numeric(0) 
  for (i in 5:ncol(data)) mystring = paste(mystring,", avg(", names[i], ")") 
  mystring = paste("Select Switch", mystring, "from main.data group by Switch") 
  sqldf(dbname = "mydb") #create a file named "mydb" to use as a permanent database 
   x = sqldf(c("create index ix on data(Switch)",mystring), dbname = "mydb") #Performs the 

operation, copying the data in mydb 
}) # 14.17 seconds 
  
#Performing the same operation again 
system.time({x = sqldf(mystring, dbname = "mydb")}) # 4.34 seconds 

  
Package: LaF 
 
Note: The LaF package has potential to do the above without loading the data into memory, but functions 
are not as straight forward to write. I will explore this further at some point. 
 
Finding subsets: 
 
The following calculations were done a 1.75GB file (same as I used for importing data), using my own 
machine with 8GB of memory. The goal is to find all observations which have dim (categorical variable) == 
"b" and fact1 (numerical variable) > 0. 
  



Table 5: Comparison finding subsets of data 

Packages Functions Time Taken 
(second) 

Remark/Note 

base 
  

Subset data.frame 

object 
3.04 

  
This is the basic method in R 

data.table data.table 3.24 Need to first convert the data frame to a data table 
and set the key (included in time).  

Subset data.table 

object 
0.00 Time taken if the data table is already built and keyed. 

sqldf sqldf NA sqldf could not be used to specify an value for the 
categorical variable because it was stored with 
quotes. 

LaF Subset LaF object 50 (approx) Subset of data obtained without loading in data  

 
Base R 
 
system.time({x = large[large$dim == '"b"' & large$fact1 > 0,]}) #3.04 seconds 

 

Package: data.table 
 
library(data.table) 

system.time({ 

  dt = data.table(large) #1.09 seconds 

  setkey(dt,dim)         #2.15 seconds, these steps can be combined: dt = 

data.table(large, key = "dim") 

  y = dt[J('"b"')]       #0 seconds, can subset on multiple factors, but need to set 

multiple keys 

  x = y[y$fact1 > 0,]    #0 seconds 

})                       #3.24 seconds total. 

 

Clearly the above is good if the data is already in a data.table format, or multiple subsets need to be 
obtained, since the data table only has to be created and keyed once. 
 
Package: sqldf - had problems using sqldf because of how the data was stored. 
 

system.time({x = sqldf("select * from large where dim = '"b"'")} #too 

many quote marks, as data was stored as "b", not b. 

 

Package: LaF 
 
system.time({x = huge.laf[huge.laf$fact1[] > 0 & huge.laf$dim[] == "b",]} 

# Subsets without loading in data, hence it takes as long as loading in the data (50  

# seconds), because accessing a hard drive is slow compared to accessing RAM. 
 
Further Comments on sqldf: 
  
The benefit of using sqldf, is that data can be permanently stored in an SQL database file. R can be restarted, 
and all one has to do is tell R where the database file is, using sqldf(dbname = “mydb”). Since the database 
is already created, sqldf can efficiently calculate summary statistics and find subsets of the data. 
Unfortunately, more complicated analysis cannot be done in this framework, but if the database already 
exists, then loading in the data should take half the time it would take using a temporary database. 
Additionally, names in R that have a “.”  in them (Such as column names like Jan.2012)  will automatically be 
changed such that the period becomes an underscore. This is because the period symbol is an operator in 
SQL. Finally, sqldf does not treat quotes as being unique. For example, consider the following line from a csv 
file, which has three columns: 



“a , b ”, “A”, 0.5, 
The sqldf package will treat it as if there were four columns | “a | b” | “A” | 0.5 | which is not ideal. So 
beware when using sqldf.  
 
Maximum object sizes in R 

 

On all builds of R prior to version 3.0.0 (32 and 64 bit), the maximum length (number of elements) of a 

vector is 2^31 - 1 ~ 2*10^9. Since the R stores matrices as vectors and dataframes as lists, the maximum 

number of cells allowed in these objects is also 2^31 – 1. Therefore the product of the number of rows and 

columns of a matrix or dataframe cannot exceed 2^31 – 1. The table below outlines the maximum matrix 

and dataframe dimensions. The bigmemory package can overcome these limitations. 

 

Number of rows Maximum number of columns 

10,000 214, 748 

100,000 21,474 

1 million 2,147 

10 million 214 

100 million 21 

1 billion 2 

 


