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1 Introduction

This document describes in detail vgam family functions for modeling bivariate binomial re-
sponses. Such commonly arise in medical and biological studies, e.g., ophthalmic studies where
each eye is a response, measurements on pairs of twins, presence/absence data on two species
of plant at the same geographical site. We write Y = (Y1, Y2)

T , where Y1 and Y2 takes
only the values 0 and 1; it is customary to denote “failure” by 0 and “success” by 1. Let
prs = P (Y1 = r, Y2 = s), r, s = 0, 1, be the joint probabilities, and pj = P (Yj = 1), j = 1, 2,
be the marginal probabilities.

A general reference for bivariate binomial data is McCullagh and Nelder (1989). Many of
vgam’s features come from glm() and gam() so that readers unfamiliar with these functions
are referred to Chambers and Hastie (1993). Additionally, the vgam User Manual should be
consulted for general instructions about the software. Lastly, the vgam documentation on
log-linear models is also very relevant as it provides another alternative.

2 Models

This section describes two classes of models currently implemented by vgam—via the bi-

nom2.or() and binom2.rho() family functions.

2.1 Bivariate logit model

The bivariate logistic model (or bivariate logistic odds-ratio model) (BLOM) described by
Section 6.5.6 of McCullagh and Nelder (1989) and Palmgren (1989) is specified by modelling the
marginal distributions of each Yj, and also the odds ratio. The odds ratio, ψ = p00 p11/(p01 p10),
is used to describe the association between the two responses. The model is:

logit pj = ηj(x) j = 1, 2 , (1)

log ψ(x) = η3(x),
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where ηj = βT
j x. The probability p11 can be obtained from p1, p2 and ψ as:

p11 =

{
1
2
(ψ − 1)−1 {a−

√
a2 + b}, ψ 6= 1;

p1 p2, ψ = 1,

where a = 1 + (p1 + p2)(ψ − 1) and b = −4ψ(ψ − 1)p1p2 (Dale, 1986). The other three joint
probabilities prs can then be recovered easily from the marginals and p11.

The BLOM is similar to the bivariate probit model (see next section) but has several ad-
vantages: it is computationally simpler, and odds ratios are preferred to correlation coefficients
when describing the association between two binary variables. In theory, there is no reason why
other link functions could not be used for the marginal probabilities.

The BLOM is implemented via binom2.or(), and is to be preferred over the BPM for both
theoretical and practical reasons. For more information, see le Cessie and van Houwelingen
(1994).

2.2 Bivariate probit model

The bivariate probit model (BPM; Ashford and Sowden (1970) can be written

P (Yj = 1|x) = Φ(ηj(x)) , j = 1, 2,

P (Y1 = 1, Y2 = 1|x) = Φ2

(
η1(x), η2(x); ρ =

exp{η3(x)} − 1

exp{η3(x)}+ 1

)
. (2)

Here, the correlation parameter ρ is modelled as a function of the covariates and Φ(·) is the
distribution function of a standard normal distribution and Φ2(·, ·; ρ) is the distribution function
of a bivariate normal with zero means, unit variances and correlation ρ.

The BPM has a nice interpretation in terms of latent variables. Note that, whereas each
marginal is modelled as a logistic regression in the BLOM, each marginal is modelled as a
“probit analysis” for the BPM. The multivariate probit model, of which the BPM is a special
case, is generally applicable to M > 3 binary responses. However, it is computationally difficult
to estimate because it requires integration of a NM density. vgam currently has no family
function that will fit a M ≥ 3 dimensional probit model.

The BPM is implemented via binom2.rho().

Table 1: The coalminers data set. Note: B =Breathlessness, W =Wheeze.

Age Group (B = 1,W = 1) (B = 1,W = 0) (B = 0,W = 1) (B = 0,W = 0)
20–24 9 7 95 1841
25–29 23 9 105 1654
30–34 54 19 177 1863
35–39 121 48 257 2357
40–44 169 54 273 1778
45–49 269 88 324 1712
50–54 404 117 245 1324
55–59 406 152 225 967
60–64 372 106 132 526
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2.3 The Frank Family of Distributions

The Frank family of copulas (see, e.g., Genest (1987)) can be used to model bivariate binary
responses. However, being more general, it is discussed in a separate document.

3 Other Topics

3.1 Code and Classes

One has

> args(binom2.or)

function (lmu = "logit", lmu1 = lmu, lmu2 = lmu, loratio = "loge",

emu = list(), emu1 = emu, emu2 = emu, eoratio = list(), imu1 = NULL,

imu2 = NULL, ioratio = NULL, zero = 3, exchangeable = FALSE,

tol = 0.001)

NULL

> args(binom2.rho)

function (lrho = "rhobit", erho = list(), init.rho = 0.4, zero = 3,

exchangeable = FALSE)

NULL

Of course, lp and lor are the links of the marginals and odds ratio respectively. For the
BPM, it doesn’t really make sense to use different link functions for the marginals as the BPM
is theoretically tied to the bivariate normal distribution. If an odds ratio is within tol of
unity then it is considered as the case of independence. The "rhobit" transformation is for
−1 < ρ < 1: η3 = log((1 + ρ)/(1− ρ)) or

> rhobit("rho", short = FALSE)

[1] "log((1+rho)/(1-rho))"

3.2 Input

The response y in vglm()/vgam() for binom2.or() is of the form, e.g.,

> vglm(y ~ x, binom2.or, weights = w)

where weights is usually optional. Here, y may be one of three types:

1. a 4-column matrix of sample proportions, where the order of the columns correspond to
(y1 = 0, y2 = 0), (y1 = 0, y2 = 1), (y1 = 1, y2 = 0), (y1 = 1, y2 = 1), respectively. Then
weights must be assigned the number of observations (unless all ni = 1).

2. a 2-column matrix (y1 y2) of 0’s and 1’s.

3. a vector containing 4 unique values (including a factor with 4 levels). When sorted or
ordered, these correspond to (y1 = 0, y2 = 0), (y1 = 0, y2 = 1), (y1 = 1, y2 = 0),
(y1 = 1, y2 = 1), respectively.

In the future more than two binary responses may be modelled by vgam family functions for
GEE1—and will be documented elsewhere when finished.
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3.3 Output

Suppose fit is a fitted bivariate binomial vgam object. Then the fitted values (in fit-

ted(fit)) are held in a n× 4 matrix of probabilities (whose rows sum to unity). The order of
the columns are like that of input, viz., (y1 = 0, y2 = 0), (y1 = 0, y2 = 1), (y1 = 1, y2 = 0),
(y1 = 1, y2 = 1). Furthermore, weights(fit, type="prior") contain the ni =

∑4
j=1 yij.

The n× 4 response matrix is saved in fit@y.

3.4 Constraints

vgam family functions for bivariate binomial responses have the parallel, exchangeable
and zero arguments. By default, parallel=FALSE, exchangeable=FALSE and zero=3; this
means that the correlation parameters ψ and ρ are modelled as an intercept-only unless assigned
a NULL value.

3.5 Convergence

The BPM seems sensitive to the initial value of ρ, i.e., has difficulties in converging sometimes.
If the default value doesn’t work, assign a different value into the argument init.rho.

3.6 Implementation Details

The S expression process.binomial2.data.vgam provides a unified way of handling the
response variable. Similarly, the S expression deviance.categorical.data.vgam computes
the deviance for all the models in this document.

The bivariate normal integrals are computed using C code in the file gaut.c.

4 Tutorial Examples

4.1 Coalminers Data

The following reproduces the models of §6.6 of McCullagh and Nelder (1989). The summary()
produces results that agree with Table 6.7.

> data(coalminers)

> coalminers = transform(coalminers, Age = (age - 42)/5)

> coalminers

BW BnW nBW nBnW age Age

1 9 7 95 1841 22 -4

2 23 9 105 1654 27 -3

3 54 19 177 1863 32 -2

4 121 48 257 2357 37 -1

5 169 54 273 1778 42 0

6 269 88 324 1712 47 1

7 404 117 245 1324 52 2

8 406 152 225 967 57 3

9 372 106 132 526 62 4
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> fit = vglm(cbind(nBnW, nBW, BnW, BW) ~ Age, binom2.or(zero = NULL),

+ coalminers, trace = TRUE)

VGLM linear loop 1 : deviance = 30.4424

VGLM linear loop 2 : deviance = 30.3939

VGLM linear loop 3 : deviance = 30.3939

VGLM linear loop 4 : deviance = 30.3939

> round(fitted(fit), dig = 3)

00 01 10 11

1 0.937 0.049 0.005 0.008

2 0.915 0.064 0.007 0.015

3 0.884 0.080 0.010 0.025

4 0.844 0.097 0.016 0.043

5 0.792 0.114 0.024 0.070

6 0.726 0.126 0.036 0.112

7 0.644 0.130 0.054 0.172

8 0.547 0.126 0.078 0.249

9 0.438 0.113 0.109 0.341

> summary(fit)

Call:

vglm(formula = cbind(nBnW, nBW, BnW, BW) ~ Age, family = binom2.or(zero = NULL),

data = coalminers, trace = TRUE)

Pearson Residuals:

Min 1Q Median 3Q Max

logit(mu1) -1.9687 -1.02898 -0.433399 0.38046 2.6796

logit(mu2) -1.1461 -0.86856 -0.112040 0.71249 1.1973

log(oratio) -1.5456 -0.49029 -0.041692 0.66471 1.3264

Coefficients:

Value Std. Error t value

(Intercept):1 -2.26247 0.0298919 -75.6884

(Intercept):2 -1.48776 0.0205593 -72.3645

(Intercept):3 3.02191 0.0697319 43.3361

Age:1 0.51451 0.0120713 42.6226

Age:2 0.32545 0.0088686 36.6966

Age:3 -0.13136 0.0284417 -4.6187

Number of linear predictors: 3

Names of linear predictors: logit(mu1), logit(mu2), log(oratio)

Dispersion Parameter for binom2.or family: 1

Residual Deviance: 30.39386 on 21 degrees of freedom
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Log-likelihood: -12858.01 on 21 degrees of freedom

Number of Iterations: 4

> coef(fit, matrix = TRUE)

logit(mu1) logit(mu2) log(oratio)

(Intercept) -2.2624682 -1.4877603 3.0219085

Age 0.5145103 0.3254455 -0.1313647

And Table 6.8 agrees with

> round(c(weights(fit, type = "prior")) * fitted(fit), dig = 3)

00 01 10 11

1 1829.946 96.446 9.049 16.559

2 1638.068 113.972 12.493 26.467

3 1868.118 169.100 22.179 53.602

4 2348.671 271.298 44.010 119.021

5 1800.740 258.869 54.257 160.134

6 1736.803 301.303 86.072 268.821

7 1346.050 272.491 112.363 359.096

8 956.839 219.814 137.156 436.191

9 497.345 128.511 123.321 386.823

The regression coefficients are highly interpretable—see §6.6 of McCullagh and Nelder (1989).

4.2 Chest Data

The data frame chest cross-classifies 10186 participants in a New Zealand cohort study by
age and chest pain in the left and right sides of the body. For example, amongst 19 year olds,
there were 65 without any chest pain, 1 with right-side chest pain only, 4 with left-side chest
pain only, and 3 with chest pain on both sides1. One can fit a nonparametric bivariate logistic
model to this data by

> data(chest)

> chest[1:5, ]

age nolnor nolr lnor lr

1 16 2 0 0 0

2 17 16 0 0 1

3 18 34 1 2 0

4 19 65 1 4 3

5 20 126 4 6 1

> cvgam0 <- vgam(cbind(nolnor, nolr, lnor, lr) ~ s(age),

+ binom2.or(exch = FALSE, zero = 3), dat = chest)

> par(mfrow = c(3, 1), mar = c(5, 5, 0.2, 1) + 0.1, xpd = TRUE,

+ las = 1)

> plot(cvgam0, se = TRUE, scale = 2, scol = "blue")

1Recall the order of the columns is (y1, y2) = (0, 0), (0, 1), (1, 0), (1, 1). Here, y1 is left chest pain.
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For illustration’s sake, the object cvgam0 is a non-exchangeable model: the marginal probabil-
ities are different. The top two plots of Fig. 1 show this model. The marginals looks similar.
Another method of comparison is to overlay the fitted function by using

> plot(cvgam0, se = TRUE, overlay = TRUE, scale = 2, scol = "blue")

(not done here).
Let’s try fitting an exchangeable model (η1 = η2) with the log odds ratio being an intercept.

> cvgam <- vgam(cbind(nolnor, nolr, lnor, lr) ~ s(age), binom2.or(exch = TRUE,

+ zero = 3), dat = chest)

> plot(cvgam, se = TRUE, scale = 2, scol = "blue")

It produces the bottom plot of Fig. 1. The scale argument is used to force the vertical axis
of the plots to be equal—thus making the size of the functions comparable. Notice that the
standard error band is noticeably more narrow because it effectively uses twice the data to
estimate it. Interestingly, the prevalence of chest pain appears to decrease between ages 40 and
60 years. Lastly,

> summary(cvgam)

Call:

vgam(formula = cbind(nolnor, nolr, lnor, lr) ~ s(age), family = binom2.or(exch = TRUE,

zero = 3), data = chest)

Number of linear predictors: 3

Names of linear predictors: logit(mu1), logit(mu2), log(oratio)

Dispersion Parameter for binom2.or family: 1

Residual Deviance: 544.4184 on 213.056 degrees of freedom

Log-likelihood: -4803.252 on 213.056 degrees of freedom

Number of Iterations: 6

DF for Terms and Approximate Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept):1 1

(Intercept):2 1

s(age) 1 2.9 21.9058 6.3682e-05

showing that there is very strong evidence that the common marginal is nonlinear in age.
As an exercise, explore whether the odds ratio is in fact constant over age. Try it linear

with age. That is, fit

logit pj(age) = f(age), (3)

log ψ(age) = β(3)0 + β(3)1 × age.

by

> fit2 <- vgam(cbind(nBnW, nBW, BnW, BW) ~ s(age, df = c(4,

+ 1)), binom2.or(exch = TRUE, zero = NULL), chest)
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Figure 1: Bivariate logistic model fitted to the chest pain data. The top two plots are a non-
exchangeable model, whereas the bottom is exchangeable.

4.3 Plotting Odds Ratios

Suppose you have a bivariate logit model with several variables and you want a plot of the odds
ratio versus one of the variables. This can be achieved using the ideas of the following (artificial
R) example.

> set.seed(123)

> n = 900

> y1 = round(runif(n) + 0.4)

> y2 = round(runif(n) + 0.4)

> x2 = rnorm(n)

> x3 = rnorm(n)
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> x4 = rnorm(n)

> x5 = rnorm(n)

> COUNT = rep(10, n)

> fit <- vgam(cbind(y1, y2) ~ s(x2) + s(x3) + x4 + x5, binom2.or(zero = NULL,

+ exchangeable = TRUE), weight = COUNT)

> fit.terms = predict(fit, type = "terms", se = TRUE, raw = TRUE)

> newdat = data.frame(x2 = x2, x3 = rep(0, n), x4 = rep(0,

+ n), x5 = rep(0, n))

> pfit = predict(fit, newdat)

> pfit.lo = pfit - 2 * fit.terms$se.fit[, "s(x2):2"]

> pfit.hi = pfit + 2 * fit.terms$se.fit[, "s(x2):2"]

> oo = with(newdat, order(x2))

> with(newdat, matplot(x2[oo], exp(cbind(pfit[oo, "log(oratio)"],

+ pfit.lo[oo, "log(oratio)"], pfit.hi[oo, "log(oratio)"])),

+ lwd = 2, col = c("black", "blue", "blue"), lty = c(1,

+ 2, 2), type = "l", xlab = "x2", ylab = "Odds Ratio",

+ main = ""))

This produces a plot of the odds ratio of Y1 and Y2 with respect to x1, keeping all the other
variables fixed at zero (Fig. 2). Standard error bands are included in the plot. One can
easily modify the code to handle x2. However, the validity of using ±2 SE bands here needs
justification which hasn’t been obtained!
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Figure 2: Odds ratio plot.

Exercises
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1. Write a vgam family function to fit a trivariate probit model. You will need to write/obtain
code to perform integration of a N3 random vector. Call it binom3.rho(). Note: what
constraints on the three correlation parameters ρ12, ρ13, and ρ23 are needed?
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