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1 Introduction

This document describes in detail vgam family functions for a categorical response variable
taking values Y = 1, 2, . . . ,M+1. Table 1 summarizes those current available. It is convenient
to consider the two cases: when Y is nominal (no order) and when Y is ordinal (ordered). An
example of the latter is Table 2 where the stages of a disease are Y = 1 for none, Y = 2 for
mild, and Y = 3 for severe symptoms.

Regarding further documentation, Yee (2010) is a journal article version complementing
this document and Yee (2008) gives an overview of VGLMs/VGAMs. General references for
categorical data include Simonoff (2003), Agresti (2002), Fahrmeir and Tutz (2001), Leonard
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(2000), Lloyd (1999), Long (1997) and McCullagh and Nelder (1989). An overview of mod-
els for ordinal responses is Liu and Agresti (2005). A manual for fitting common categori-
cal models with various software found in Agresti (2002) is Thompson (2009). The website
http://www.ats.ucla.edu/stat/R contains some useful material too.

Many of vgam’s features come from glm() and gam() so that readers unfamiliar with these
functions are referred to Chambers and Hastie (1993). Additionally, the vgam User Manual
should be consulted for general instructions about the software. vgam allows a categorical
response to be inputted as a vector of factors, or a n× (M +1) matrix of counts. If the former,
it will be converted to the latter form. For more information, see Section 5.1.

Table 1: Quantities defined in vgam for a categorical response Y taking values 1, . . . ,M+1.
Covariates x have been omitted for clarity. The LHS quantities are ηj or ηj−1 for j =
1, . . . ,M and j = 2, . . . ,M + 1 respectively. All except for multinomial() are suited
to ordinal Y . Note that propodds() is a shortcut to cumulative(parallel = TRUE,

reverse = TRUE, link = "logit").
t

Quantity Notation Range of j vgam family function
P (Y = j + 1)/P (Y = j) ζj 1, . . . ,M acat()
P (Y = j)/P (Y = j + 1) ζRj 2, . . . ,M + 1 acat(reverse = TRUE)

P (Y > j|Y ≥ j) δ∗j 1, . . . ,M cratio()
P (Y < j|Y ≤ j) δ∗Rj 2, . . . ,M + 1 cratio(reverse = TRUE)

P (Y ≤ j) γj 1, . . . ,M cumulative()
P (Y ≥ j) γRj 2, . . . ,M + 1 cumulative(reverse = TRUE)

log{P (Y = j)/P (Y = M + 1)} 1, . . . ,M multinomial()
See caption propodds()

P (Y = j|Y ≥ j) δj 1, . . . ,M sratio()
P (Y = j|Y ≤ j) δRj 2, . . . ,M + 1 sratio(reverse = TRUE)

2 Nominal Responses

The multinomial logit model is the most common model in this case. We describe this below,
as well as a variant called the stereotype model.

2.1 Multinomial logit model

The multinomial logit model (MLM), which is also known as the multiple logistic regression
model or polytomous logistic regression model, is given by

pj = P (Y = j|x) =
exp{ηj(x)}

M+1∑
`=1

exp{η`(x)}
, j = 1, . . . ,M + 1, (1)

where ηj(x) = βTj x. The model is particularly useful for exploring how the relative chances of
falling into the response categories depend upon the covariates as pj(x)/pk(x) = exp {ηj(x)− ηk(x)}.
Identifiability constraints, e.g., ηM+1(x) ≡ 0, are required by the model. This implies

log

(
pj

pM+1

)
= ηj, j = 1, . . . ,M. (2)
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vgam fits the multinomial logit model using the family function multinomial(). It uses
the last column of the response matrix as baseline (by default), or if the response is a factor,
the last level. The special case of M = 1 corresponds to logistic regression. The multinomial
logit model is also related to neural networks and to classification—see, e.g., Ripley (1996).

2.1.1 Marginal effects

The marginal effects in the MLM are the derivatives of the probabilities with respect to the
explanatory variables. In some applications, where even knowing the sign is important, this is
particularly useful to know.

Consider a MLM without constraints. The marginal effects are given as

∂ pj(xi)

∂ xi
= pj(xi)

{
βj −

M+1∑
s=1

ps(xi)βs

}
. (3)

(Show this—it is an exercise). Marginal effects are implemented in margeff(), which will
accept a multinomial() VGLM.

By the way, a related quantity know as the elasticities are

∂ pj(xi)

∂ xik

xik
pj(xi)

= xik

{
β(j)k −

M+1∑
s=1

ps(xi) β(s)k

}
. (4)

For the "cumulative" family with reverse = FALSE we have pj = γj − γj−1 = h(ηj)−
h(ηj−1) where h = g−1 is the inverse of the link function. Then

∂ pj(x)

∂ x
= h′(ηj)βj − h′(ηj−1)βj−1. (5)

The function margeff() will also accept a cumulative() VGLM.

Table 2: Period of exposure (years) and severity of pneumoconiosis amongst a group of
coalminers.

Exposure Time Normal Mild Severe
5.8 98 0 0

15.0 51 2 1
21.5 34 6 3
27.5 35 5 8
33.5 32 10 9
39.5 23 7 8
46.0 12 6 10
51.5 4 2 5

2.2 Stereotype Model

This model, which we sometimes refer to as the reduced-rank multinomial logit model, was
proposed by Anderson (1984) who described it as being suitable for all (ordered or unordered)
categorical response variables. The basic idea is that if M and p are even moderately large
then the total number of regression coefficients in the multinomial logit model will be large.
One method of parsimony is to approximate the M × p matrix of regression coefficients by a
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lower rank matrix. In detail, the reduced-rank concept replaces B = (β1, . . . ,βM)T (without
the intercepts) by

B = CAT (6)

where C = (c1 c2 · · · cr) is p × r, A = (a1 a2 · · ·ar) is M × r and r (usually � min(M, p))
is the rank of A and C. It is convenient to write

ηi = η0 + A CTxi = η0 + Aνi .

The stereotype model is a special case of a Reduced-rank VGLM (RR-VGLM). It may
be fitted using rrvglm() and multinomial(). See the other documentation regarding RR-
VGLMs for more details.

It is well known that the factorization (6) is not unique as ηi = η0 + A M M−1 νi for any
nonsingular matrix M. A common form of constraint which ensures A is of rank r and unique
is to restrict it to the form

A =

(
Ir
Ã

)
,

where Ã is a (M − r) × r matrix. In fact, any r rows of A may be chosen to represent Ir
1.

This method of identifiability is implemented in vgam.

3 Ordinal Responses

3.1 Models Involving Cumulative Probabilities

When the response is ordered the most common models involve the cumulative probabilities
P (Y ≤ j|x) (see McCullagh (1980)), in particular, the proportional odds model is

logitP (Y ≤ j|x) = β(j)1 + βTx(−1), j = 1, . . . ,M.

We call models of the form

logitP (Y ≤ j|x) = ηj j = 1, . . . ,M

cumulative logit models as they involve the logit link function and cumulative probabilities.
The proportional odds model is a cumulative logit model with the parallelism assumption β1 =
· · · = βM . It is well-known that the parallelism assumption applied to a cumulative logit model
results in the effect of the covariates on the odds ratio being the same regardless of the division
point j, hence the name proportional odds model (this property is called strict stochastic
ordering (McCullagh, 1980)). In practice, the parallelism assumption should be checked; see,
e.g., Armstrong and Sloan (1989), Peterson (1990). In general, the proportional odds model is

logitP (Y ≤ j|x) = β(j)1 + η, j = 1, . . . ,M. (7)

If a complementary log-log link is chosen in (7) the result is known as the proportional hazards
model. In theory, any other link function used for binomial data such as the probit link (which

1Actually, if the ‘wrong’ rows of A are chosen to represent Ir, then A may be ill-conditioned at the
solution, or even failing to exist.
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is often referred to as the ordinal probit model or cumulative probit model) can be applied to
cumulative probability models.

One reason for the proportional-odds cumulative-logit model’s popularity is its connection
to the idea of a continuous latent response. It can be shown that proportional-odds model
can be motivated by the categorical outcome Y being a categorized version of an unobservable
(latent) continuous variable, Z, say. Then Y = k if ck−1 < Z ≤ ck where the ck are known as
cutpoints. It is assumed that the regression of Z on x has the form

Z = βTx+ ε,

where x has an intercept and ε is a random error from a logistic distribution with mean zero and
constant variance. Then the coarsened version Y will be related to the x by a proportional-odds
cumulative logit model. Note that the logistic distribution has a bell-shaped density similar to
a normal curve, and it may be fitted to raw data with vgam family functions logistic1()

and logistic2(). If ε had normal errors rather than logistic errors then the cumulative logit
equations would change to have a probit link—this is known as a cumulative probit model. For
more information see McCullagh and Nelder (1989).

vgam fits models based on cumulative probabilities using the family function cumula-

tive(). It has a limited shortcut called propodds(). Liu and Agresti (2005) call this class of
models cumulative link models. Of course, cumulative() allows other link functions, and the
parallelism assumption β1 = · · · = βM (or more generally, f(1)k(xk) = · · · = f(M)k(xk)). For
example,

> vglm(y ~ x2, cumulative(link = probit, reverse = TRUE,

+ parallel = TRUE), mydataframe)

fits the model

Φ−1{P (Y ≥ j|x)} = β(j−1)1 + β2x2, j = 2, . . . ,M + 1.

Similarly,

> vgam(y ~ s(x2), cumulative(link = probit, reverse = TRUE,

+ parallel = TRUE), mydataframe)

fits the model

Φ−1{P (Y ≥ j|x)} = β(j−1)1 + f(1)2(x2), j = 2, . . . ,M + 1

for some smooth function f(1)2.
If the proportional odds assumption is inadequate then one can try to use a different link

function or add extra terms such as interaction terms into the linear predictor. Another strategy
is the so-called partial proportional odds model (Peterson and Harrell, 1990) which vgam may
fit.

3.2 Models Involving Stopping-ratios and Continuation-ratios

Quantities known as continuation-ratios are useful for the analysis of a sequential process, e.g.,
to ascertain the effect of a covariate on the number of children a couple choose to have (Y = 1
(no children), 2 (1 child), 3 (2 child), 4 (3+ children)), or whether a risk factor is related to the
progression of a disease (Y = 1 (no disease), 2 (localized), 3 (widespread), 4 (terminal)). For
such data, there are two ways of modelling the situation—these are deciding whether to look at
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Table 3: Summary of the default values of the parallel argument, and whether parallel
= TRUE ever applies to the intercept.

family = Default: parallel = Apply to intercepts?
acat FALSE No
cratio FALSE No
cumulative FALSE No
multinomial FALSE Yes
propodds TRUE (fixed value) No
sratio FALSE No

the probability of stopping at Y = j or continuing past Y = j, given that Y has reached level
j in the first place. Which of the two is more natural depends on the particular application.

Because there are differences in the literature Table 1 summarizes the vgam definition of
a continuation-ratio, and also lists a quantity termed the stopping-ratio to help distinguish
between the two types. The stopping ratio matches the definition of the continuation-ratio in
Agresti (2002). Note that, regardless of type, one sometimes wishes to reverse Y so that it is
enumerated from M + 1,M, . . . , 1 instead; this is handled by prefixing their name by“reverse,”
e.g., δRj ≡ P (Y = j|Y ≤ j), j = 2, . . . ,M+1 is called a reverse stopping ratio. Some authors
use “backward” instead of “reverse” and “forward” if it is not reversed.

For all the models listed in Table 1, vgam allows other link functions to be used, as well
as allowing the parallelism assumption β1 = · · · = βM (or more generally, f(1)k(xk) = · · · =
f(M)k(xk)), and the zero = argument to constrain ηj be be a intercept term only. To see the
default values of these arguments use the args() function, e.g., args(sratio).

The quantities in Table 1 are all interrelated. The following formulae give some of these
relationships.

γj = 1− γRj−1, γ0 = 0, γM+1 = 1, j = 1, . . . ,M,

δj =
pj

1− γj−1

, j = 1, . . . ,M,

δRj =
pj
γj
, j = 2, . . . ,M + 1, δR1 = 1,

δ∗j = 1− δj =
1− γj

1− γj−1

, j = 1, . . . ,M,

δ∗1 = 1− p1, δ∗M+1 = 0,

δ∗Rj = 1− δRj =
γj−1

γj
, j = 2, . . . ,M + 1,

δ1 = p1, δM+1 = 1,

δ∗R1 = 0, δ∗RM+1 = 1− pM+1.

For further information on these models see, e.g., Armstrong and Sloan (1989).

3.3 Models Involving Adjacent Categories

Adjacent-category models are models for categorical data in the form

g(pj/pj+1) = ηj, j = 1, . . . ,M,
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for some link function g (log or identity because pj/pj+1 does not necessarily lie in [0, 1].)
Reverse adjacent-category models use

g(pj/pj−1) = ηj−1, j = 2, . . . ,M + 1.

4 The Bradley-Terry Model

Consider an experiment consisting of nij judges who compare pairs of items Ti, i = 1, . . . ,M+1.
They express their preferences between Ti and Tj. Let N =

∑∑
i<j nij be the total number of

pairwise comparisons, and assume independence for ratings of the same pair by different judges
and for ratings of different pairs by the same judge.

A model describing this experiment was proposed by Bradley and Terry (1952) and Zermelo
(1929). Let πi be the worth of item Ti,

P [Ti > Tj] = pi/ij =
πi

πi + πj
,

i 6= j, where “Ti > Tj” means i is preferred over j. Suppose that πi > 0. Let Yij be
the number of times that Ti is preferred over Tj in the nij comparisons of the pairs. Then
Yij ∼ Bin(nij, pi/ij). Maximum likelihood estimation of the parameters π1, . . . , πM+1 involves
maximizing

M+1∏
i<j

(
nij
yij

)(
πi

πi + πj

)yij
(

πj
πi + πj

)nij−yij

.

By default, πM+1 ≡ 1 is used for identifiability, however, this can be changed very easily. Note
that one can define linear predictors ηij of the form

logit

(
πi

πi + πj

)
= log

(
πi
πj

)
= λi − λj. (8)

The VGAM framework can handle the Bradley-Terry model only for intercept models. It has

λj = ηj = log πj = β(1)j, j = 1, . . . ,M. (9)

As well as having many applications in the field of preferences, the Bradley-Terry model has
many uses in modelling ‘contests’ between teams i and j, where only one of the teams can win
in each contest (ties are not allowed under the classical model).

The R package BradleyTerry by D. Firth can fit the Bradley-Terry model; see Firth (2005)
for details.

4.1 Example

Consider the effect of the food-enhancer monosodium glutamate (MSG) on the flavour of apple
sauce in the data given in Table 4. Treatments 1, 2 and 3 are increasing amounts of the
substance, and Treatment 4 is a control with no MSG. Four independent comparisons were
made of each of the six pairs.

We apply the vgam family function brat(), which implements the Bradley-Terry model,
to the apple sauce data.

> amsg = matrix(c(NA, 3, 3, 3, 1, NA, 3, 4, 1, 1, NA, 0,

+ 1, 0, 4, NA), 4, 4, byrow = TRUE)

> dimnames(amsg) = list(winner = as.character(1:4), loser = as.character(1:4))

> fit = vglm(Brat(amsg) ~ 1, brat)
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This gives

> summary(fit)

Call:

vglm(formula = Brat(amsg) ~ 1, family = brat)

Pearson Residuals:

Coefficients:

Value Std. Error t value

(Intercept):1 1.2112 0.84083 1.4405

(Intercept):2 0.8943 0.80747 1.1075

(Intercept):3 -0.9961 0.87068 -1.1441

Number of linear predictors: 3

Names of linear predictors: log(alpha1), log(alpha2), log(alpha3)

Dispersion Parameter for brat family: 1

Log-likelihood: -25.989 on 0 degrees of freedom

Number of Iterations: 4

> Coef(fit)

alpha1 alpha2 alpha3

3.3576125 2.4456117 0.3693147

By default, the last reference group is baseline, so that λ4 ≡ 1. We have λ̂1 ≈ 3.358,
λ̂2 ≈ 2.446, λ̂3 ≈ 0.369, therefore we conclude that Treatment 1 is the most preferred,
followed by Treatments 2 and 4, and lastly Treatment 3. It appears that the more MSG, the
worse the taste, however, the control treatment tastes the second worse.

Finally,

> InverseBrat(fitted(fit))

1 2 3 4

1 NA 0.5785771 0.9009064 0.7705165

Table 4: Apple sauce data and model. The i and j index the items. The Ck denote columns
of a contrast matrix with respect to the λs.

i j yij nij ηij C1 C2 C3 C4

1 2 3 4 λ1 − λ2 1 –1
1 3 3 4 λ1 − λ3 1 –1
1 4 3 4 λ1 − λ4 1 –1
2 3 3 4 λ2 − λ3 1 –1
2 4 4 4 λ2 − λ4 1 –1
3 4 0 4 λ3 − λ4 1 –1

9



2 0.42142293 NA 0.8688013 0.7097758

3 0.09909362 0.1311987 NA 0.2697077

4 0.22948346 0.2902242 0.7302923 NA

gives the estimated probabilities of Treatments i“beating” Treatments j, P̂ [i > j].

4.2 Bradley-Terry Model with Ties

Consider a Bradley-Terry model with ties (no preference). This is useful because it is common
for people to say that both Ti and Tj are equally good or bad. There are at least two ways of
modelling ties:

(i)

P (Ti > Tj) =
πi

πi + πj + π0

,

P (Ti < Tj) =
πj

πi + πj + π0

,

P (Ti = Tj) =
π0

πi + πj + π0

.

Here, π0 > 0 is an extra parameter.

(ii) Davidson (1970) proposed

P (Ti > Tj) =
πi

πi + πj + q
√
πi πj

,

P (Ti < Tj) =
πj

πi + πj + q
√
πi πj

,

P (Ti = Tj) =
q
√
πi πj

πi + πj + q
√
πi πj

,

where q > 1.

The first model, (i), has been implemented in the vgam family function bratt(). It has

η = (log π1, . . . , log πM−1, log π0)
T

by default, where there are M competitors and πM ≡ 1. Like brat(), one can choose a
different reference group and reference value.

For futher information about ties, see Kuk (1995) and Torsney (2004).

5 Other Topics

5.1 Input

The response in vglm()/vgam() can be

1. an n × (M + 1) matrix of counts. The columns are best labelled, and the jth column
denotes Y = j.

2. a vector. The unique values, when sorted (or levels if a factor), denote the M + 1 levels
from 1, . . . ,M + 1. If a factor, it may be ordered or unordered. The functions factor(),
ordered(), levels(), are useful; see the R online help.
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Note: if weights is used as input, then any zero values should be deleted first. For example,
if n is a vector containing zeros, then something like

> vglm(..., weights = n, subset = n > 0)

should be used.

5.2 Output

Suppose fit is a categorical vgam object. Like binomialff(), the fitted values (in fit-

ted(fit)) are probabilities and weights(fit, type="prior") contain the ni =
∑M+1
j=1 yij.

However, fitted(fit) is a n× (M + 1) matrix, whose rows sum to unity.

5.3 Constraints

All categorical data family functions have the parallel and zero arguments. By default,
parallel = FALSE and zero = NULL for all models. This means that to make the parallelism
assumption one must explicitly invoke it as such. The reason for this is that the parallelism
assumption must be checked, and the software discourages users from making assumptions
without thinking. Unfortunately, the default values may fail on some data, or lead to a large
number of parameters.

Table 3 summarizes whether parallel = TRUE is applied to the intercepts. Also, all
categorical data family functions have a reverse = FALSE argument.

5.4 Implementation Details

The S expression process.categorical.data.vgam provides a unified way of handling the
response variable. The variable delete.zero.colns should be set to TRUE or FALSE prior to
evaluating process.categorical.data.vgam in the slot @initialize to handle columns of
the response matrix that contain all 0’s. In some situations these must be deleted.

Similarly, the expression deviance.categorical.data.vgam computes the deviance for
all the models in this document.

5.5 Convergence

The vgam family functions described in this document use the type of algorithm described
in McCullagh (1980). He showed that a unique maximum of the likelihood is guarenteed for
sufficiently large sample sizes, though infinite parameter values can arise with sparse data sets
containing certain patterns of zeros. Usually, one obtains rapid convergence to the MLEs.

5.6 Over-dispersion

Over-dispersion for polytomous responses can occur just like it does for binary responses (see
documentation on GLM and GAM vgam family functions). Sec. 5.5 of McCullagh and Nelder
(1989) use

σ̃2 = X2/{nM − p} = X2/{residual d.f}, (10)

where X2 is Pearson’s statistic. They state that this is approximately unbiased for σ2, is
consistent for large n regardless of whether the data are sparse, and is approximately independent
of the estimated β̂.
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Following GLM and GAM-type vgam family functions, categorical family functions might
one day have a dispersion argument. The default for all will be 1, and if set to 0, it will
be estimated using some formula. Note that summary() uses a generalization of the Pearson
statistic, which reduces to (10) for some models.

5.7 Relationship with binomialff()

vgam can fit to binomial responses using binomialff(), which is incompatible with glm()

and gam().
If y is a vector of 0s and 1s then simple logistic regression can be performed as follows:

1. glm(y ~ ..., family = binomial, ...)

2. vglm(y ~ ..., family = binomialff, ...)

3. vglm(1-y ~ ..., multinomial, ...),

4. vglm(cbind(y,1-y) ~ ..., multinomial, ...),

5. vglm(y ~ ..., cumulative(reverse = TRUE), ...).

These hold because the final level is used as the baseline category for the MLM. However, this
reference category can be changed using an argument of multinomial().

5.8 The xij Argument

The xij argument allows for covariate values that are specific to each ηj. For example, suppose
we have two binary responses, Yj = 1 or 0 for presence/absence of a cataract, where j = 1, 2
for the left and right eyes respectively. We have a single covariate, called ocular pressure, which
measures the internal fluid pressure within each eye. With data from n people, it would be
natural to fit an exchangeable bivariate logistic model:

logitP (Yij = 1) = β(1)1 + β(1)2 xij, j = 1, 2; i = 1, . . . , n;

log ψ = β(3)1, (11)

where the dependency between the responses is modelled through the odds ratio ψ. Note that
the regression coefficient for xi1 and xi2 is the same, and xi1 6= xi2 in general.

Another example is if you were an econometrician interested in peoples’ choice of transport
for travelling to work. Suppose Y = 1 means bus, Y = 2 means train, Y = 3 means car,
and Y = 4 means walking to work, and that we have two covariates: X2 = cost, and X3 =
journey duration. Suppose we collect data from a random sample of n people from some
population, and that each person has access to all these transport modes. For such data, a
natural regression model would be a multinomial logit model with M = 3: for j = 1, . . . ,M ,

log
P (Y = j)

P (Y = M + 1)
= ηj = β(j)1 + β2(xi2j − xi2,M+1) + β3(xi3j − xi3,M+1),

where xi2j is the cost for the jth transport means for the ith person, and xi3j is the journey
duration of the jth transport means for the ith person. Note that, apart from the intercepts,
there are two regression coefficients, β2 and β3.

To fit such models in vgam one needs to use the xij and form2 arguments. See Yee (2010)
and the online documentation concerning this important feature, e.g., fill(), vglm.control().
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5.9 Reduced-rank Regression

A RR-VGLM (reduced-rank VGLM) replaces the (large) M ×p coefficient matrix BT by A CT ,
where A is M × r and C is p × r, r � min(M, p). The application to the multinomial logit
model is only one special case (called the stereotype model). For more details, see Yee and
Hastie (2003).

6 Tutorial Examples

In this section we illustrate some of the models. We will make use of the pneumoconiosis data
in Table 2 (see McCullagh and Nelder (1989)). Recall the ordinal response is the severity of
pneumoconiosis in coalface workers (categorized as 1 = normal, 2 = mild pneumoconiosis, 3
= severe pneumoconiosis) and the covariate is the number of years of exposure. In fact, in the
following, we use x2 = log(exposure time).

6.1 Multinomial logit model

Although Y is ordinal for the pneumoconiosis data, we fit the multinomial logit model for the
sake of illustration.

> data(pneumo)

> pneumo = transform(pneumo, let = log(exposure.time))

> fit.mlm <- vglm(cbind(normal, mild, severe) ~ let, multinomial,

+ pneumo)

> coef(fit.mlm, matrix = TRUE)

log(mu[,1]/mu[,3]) log(mu[,2]/mu[,3])

(Intercept) 11.975092 3.0390622

let -3.067466 -0.9020936

> summary(fit.mlm)

Call:

vglm(formula = cbind(normal, mild, severe) ~ let, family = multinomial,

data = pneumo)

Pearson Residuals:

Min 1Q Median 3Q Max

log(mu[,1]/mu[,3]) -0.75473 -0.20032 -0.043255 0.43644 0.92283

log(mu[,2]/mu[,3]) -0.81385 -0.43818 -0.121281 0.15716 1.03229

Coefficients:

Value Std. Error t value

(Intercept):1 11.9751 2.00044 5.9862

(Intercept):2 3.0391 2.37607 1.2790

let:1 -3.0675 0.56521 -5.4272

let:2 -0.9021 0.66898 -1.3485

Number of linear predictors: 2
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Names of linear predictors: log(mu[,1]/mu[,3]), log(mu[,2]/mu[,3])

Dispersion Parameter for multinomial family: 1

Residual Deviance: 5.34738 on 12 degrees of freedom

Log-likelihood: -25.25054 on 12 degrees of freedom

Number of Iterations: 4

Note that mu[j,] is the jth column of the matrix of fitted values. The estimated variance-
covariance matrix of the regression coefficients is summary(fit.mlm)@cov.unscaled (if the
dispersion parameter is unity), or more elegantly, vcov(fit.mlm).

6.2 Stereotype model

In the following, fit1 fits a rank-1 stereotype model.

> data(pneumo)

> pneumo = transform(pneumo, let = log(exposure.time))

> fit1 = rrvglm(cbind(normal, mild, severe) ~ let, multinomial,

+ Rank = 1, pneumo)

> constraints(fit1)

$`(Intercept)`

[,1] [,2]

[1,] 1 0

[2,] 0 1

$let

[,1]

[1,] 1.0000000

[2,] 0.2940843

> coef(fit1)

(Intercept):1 (Intercept):2 let

11.975092 3.039062 -3.067466

> coef(fit1, matrix = TRUE)

log(mu[,1]/mu[,3]) log(mu[,2]/mu[,3])

(Intercept) 11.975092 3.0390622

let -3.067466 -0.9020936

That is, A = (constraints(fit1))[["let"]] = (1, 0.2940857)T and C = (−3.067469).
Note that coef(fit1, matrix = TRUE) looks very similar to fit.mlm above—it should be!
This is because this RR-MLM is exactly the same model as the MLM because the rank equals
the number of covariates which is one. It is like a saturated reduced-rank model.
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6.3 Proportional odds model

Page 179 of McCullagh and Nelder (1989) fit a proportional odds model to the pneumoconiosis
data. They concluded that the logarithm of exposure time was strongly preferred to simply
exposure time, and fitted the model

logit γ̂j(xi) = α̂j − β̂ log(exposure timei), i = 1, . . . , 8, j = 1, 2.

We can fit this (not exactly with respect to the signs) by

> fit.pom <- vglm(cbind(normal, mild, severe) ~ let, fam = propodds,

+ pneumo)

or

> fit.pom <- vglm(cbind(normal, mild, severe) ~ let, fam = cumulative(parallel = TRUE),

+ pneumo)

Then the matrix of regression coefficients can be obtained

> coef(fit.pom, matrix = TRUE)

logit(P[Y<=1]) logit(P[Y<=2])

(Intercept) 9.676092 10.581724

let -2.596806 -2.596806

which agrees to that of McCullagh & Nelder. Note that coef(fit.pom) is recommended over
using fit.pom@coefficients, which, for this example, is the vector (α̂1, α̂2, β̂)T . The general
enumeration of the elements in @coefficients is given in the vgam User Manual.

Also,

> summary(fit.pom)

Call:

vglm(formula = cbind(normal, mild, severe) ~ let, family = cumulative(parallel = TRUE),

data = pneumo)

Pearson Residuals:

Min 1Q Median 3Q Max

logit(P[Y<=1]) -1.2479 -0.071638 0.14410 0.30859 0.77144

logit(P[Y<=2]) -1.0444 -0.184147 0.30926 0.33528 0.50477

Coefficients:

Value Std. Error t value

(Intercept):1 9.6761 1.3241 7.3078

(Intercept):2 10.5817 1.3454 7.8649

let -2.5968 0.3811 -6.8140

Number of linear predictors: 2

Names of linear predictors: logit(P[Y<=1]), logit(P[Y<=2])

Dispersion Parameter for cumulative family: 1
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Residual Deviance: 5.02683 on 13 degrees of freedom

Log-likelihood: -25.09026 on 13 degrees of freedom

Number of Iterations: 6

Now one can formally test the proportional odds assumption by a likelihood ratio test. This
can be done by

> fit.npom <- vglm(cbind(normal, mild, severe) ~ let, cumulative,

+ pneumo)

> pchisq(deviance(fit.pom) - deviance(fit.npom), df = df.residual(fit.pom) -

+ df.residual(fit.npom), lower.tail = FALSE)

[1] 0.7058849

There is no evidence against the proportional odds assumption.
The fitted probabilities can be obtained by

> fitted(fit.npom)

normal mild severe

1 0.9937774 0.004356443 0.001866134

2 0.9327738 0.042506379 0.024719812

3 0.8461118 0.090169357 0.063718886

4 0.7448902 0.137177345 0.117932441

5 0.6373943 0.175768145 0.186837528

6 0.5350518 0.199663151 0.265285079

7 0.4375094 0.208312388 0.354178218

8 0.3677969 0.204411220 0.427791905

6.4 Stopping Ratio Model

Page 88 of Fahrmeir and Tutz (1994) fit a “sequential logit” model to some tonsil data. The
data is reproduced in Table 5, and has been examined by, e.g., McCullagh (1980). It is assumed
that tonsil size starts off in the“present but not enlarged”form, and then can become enlarged,
and then possibly“greatly enlarged.” Thus a sequential model such as the stopping ratio model
maybe appropriate.

We reproduce the results of column 2 of Table 3.6 of Fahrmeir and Tutz (1994) by the
following. Note that the variable carrier here takes on values −1 and 1, rather than the usual
0 and 1.

> ymat = matrix(c(19, 29, 24, 497, 560, 269), 2, 3, byrow = TRUE)

> dimnames(ymat) = list(NULL, c("present but not enlarged",

+ "enlarged", "greatly enlarged"))

> tonsils = data.frame(carrier = c(1, -1))

> ymat

present but not enlarged enlarged greatly enlarged

[1,] 19 29 24

[2,] 497 560 269
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> fit = vglm(ymat ~ carrier, sratio(par = TRUE, rev = FALSE),

+ tonsils, trace = TRUE, crit = "c")

VGLM linear loop 1 : coefficients =

-0.775224575, 0.467970163, -0.264207381

VGLM linear loop 2 : coefficients =

-0.775249403, 0.467949487, -0.264230636

VGLM linear loop 3 : coefficients =

-0.775249437, 0.467949444, -0.264230673

VGLM linear loop 4 : coefficients =

-0.775249437, 0.467949444, -0.264230673

> fit

Call:

vglm(formula = ymat ~ carrier, family = sratio(par = TRUE, rev = FALSE),

data = tonsils, trace = TRUE, crit = "c")

Coefficients:

(Intercept):1 (Intercept):2 carrier

-0.7752494 0.4679494 -0.2642307

Degrees of Freedom: 4 Total; 1 Residual

Residual Deviance: 0.005657256

Log-likelihood: -11.76594

> coef(fit, matrix = TRUE)

logit(P[Y=1|Y>=1]) logit(P[Y=2|Y>=2])

(Intercept) -0.7752494 0.4679494

carrier -0.2642307 -0.2642307

> summary(fit)

Call:

vglm(formula = ymat ~ carrier, family = sratio(par = TRUE, rev = FALSE),

data = tonsils, trace = TRUE, crit = "c")

Pearson Residuals:

logit(P[Y=1|Y>=1]) logit(P[Y=2|Y>=2])

1 0.050963 -0.052368

2 -0.010777 0.014092

Coefficients:

Value Std. Error t value

(Intercept):1 -0.77525 0.106085 -7.3078

(Intercept):2 0.46795 0.111556 4.1948

carrier -0.26423 0.098873 -2.6724

Number of linear predictors: 2
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Names of linear predictors: logit(P[Y=1|Y>=1]), logit(P[Y=2|Y>=2])

Dispersion Parameter for sratio family: 1

Residual Deviance: 0.00566 on 1 degrees of freedom

Log-likelihood: -11.76594 on 1 degrees of freedom

Number of Iterations: 4

The linear predictors and fitted values can be obtained as follows.

> predict(fit)

logit(P[Y=1|Y>=1]) logit(P[Y=2|Y>=2])

1 -1.0394801 0.2037188

2 -0.5110188 0.7321801

> fitted(fit)

present but not enlarged enlarged greatly enlarged

1 0.2612503 0.4068696 0.3318801

2 0.3749547 0.4220828 0.2029625

> fitted(fit) * c(weights(fit, type = "prior"))

present but not enlarged enlarged greatly enlarged

1 18.81002 29.29461 23.89537

2 497.18998 559.68173 269.12829

7 FAQ

Models for categorical responses (aka categorical data analysis, or CDA) are a very frequent
form of data, and the modelling functions of this article seem to be heavily used relative to
other vgam family functions. Here is a list of some common FAQs. We will assume the fitted
model is called fit.

1. Q: How I can extract the standard errors for the model coefficients from the output?

A: A (bad) way is to try

> slotNames(fit)

> summary(fit)@coef3

> summary(fit)@coef3[, "Std. Error"]

But better is

> coef(summary(fit))[, "Std. Error"]

This is also recommended:

> sqrt(diag(vcov(fit)))
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Note that the slot name“coef3”may change in the future so it shouldn’t be used directly.

2. Q: Why aren’t the Wald statistics p-values printed out in the summary()?

A: vgam fits so many models from a broad range of statistical fields and subjects that it
is potentially dangerous to print out a p-value. The methods function summaryvglm()

ought to be accurate for all vgam family functions, therefore it was thought that it was
best to leave out p-values. Possibly an argument pvalues could be added in the future.

8 Other Software

There are several other R implementations for fitting categorical regression models. Some of
them are described in Yee (2010), who argues that these implementations tend to be piecemeal
in nature, and do not provide a unified framework that is as understandable or comprehensive
as VGLMs/VGAMs.

9 Yet To Do

Things yet to be done include

1. Allow for a dispersion parameter. Currently this is possible for GLM-type family functions.
A unified and uniform way of handling these is to have dispersion=0 or dispersion=1.
It is easy to modify existing vgam family functions, but this hasn’t been done yet—the
theory is undeveloped.

2. Improvement to biplots of RR-VGLMs are needed.

3. RR-VGAMs are yet to be implemented. This involves vector projection pursuit regression.

4. Investigate vector smoothing subject to the constraint that the component functions never
intersect. This would mean the non-parametric cumulative logit model would not have
problems with negative probabilities etc.

Exercises

1. McCullagh (1980) proposed the following model which incorporates dispersion effects:

P (Y ≤ j|x) = G

(
β(j)0 − βTx

τx

)
,

where G is the cumulative distribution function of some continuous distribution such as
the logistic distribution. Write a vgam family function to fit this model. It should have
the usual parallel and reverse and zero options.

Table 5: Tonsil data. The size of the tonsil is cross-classified as to whether the child was
a carrier of Streptococcus pyogenes. The data was collected from 2413 healthy children
(Holmes and Williams, 1954).

Carrier? Present but not enlarged Enlarged Greatly enlarged
Yes 19 29 24
No 497 560 269
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2. For the multinomial logit model show that Fisher scoring is equivalent to Newton-
Raphson. To do this, show that the likelihood score vector di = ni(y

∗
i − p∗i ), and

Wi = ni(diag(p∗i ) − p∗ip∗Ti ), where y∗i = (yi1, . . . , yiM)T are sample proportions,
ni =

∑M+1
j=1 yij is the number of counts with xi, and pi = (pi1, . . . , piM)T = E(y∗i ) are

fitted probabilities. The asterix here is used to denote that y∗i is yi with yi,M+1 dropped.
Here, di = ∂`i/∂ηi, ` =

∑n
i=1 `i is the log-likelihood, and Wi = −∂2`i/(∂η ∂η

T ).

3. Obtain an expression for the marginal effects of a cumulative logit model, cf. (3) for the
MLM. Modify margeff() to compute this quantity for a cumulative() VGLM.

4. Motivate the Bradley-Terry model using a latent variable argument that uses the logistic
distribution. Replacing the logistic distribution by a normal distribution results in the
Thurstone model (i.e., replace the logit link in (8) by a probit link). Adapt brat() to
handle both distributions. Is it feasible to handle the cloglog() and tanl() links as
well? If so, implement those too.

5. Another way of modelling paired comparison data is via the model (Rao and Kupper,
1967)

P (Ti > Tj) = πi/(πi + qπj),

P (Ti < Tj) = πj/(πj + qπi),

where q > 1. This model can be motivated by latent variables and a logistic distribution
since P (Ti > Tj) = G(λi−λj−τ), τ ≥ 0, where G(·) is the logistic distribution function
and πi = exp(λi), q = exp(τ).

6. Write a vgam family function to implement the model (ii) for ties in Section 4.2. It is
based on Davidson (1970).

7. Write a vgam family function to implement triple comparisons, i.e., let

θijk = P (Ti > Tj > Tk)

be the probability that Ti is preferred to Tj and Tj is preferred to Tk. One way is to
choose

θijk =
πiπj

(πi + πj + πk)(πj + πk)
.

An alternative is

θijk =
π2
i πj

π2
i πj + π2

jπi + π2
i πk + π2

kπi + π2
jπk + π2

kπj
.

Write a vgam family function for each of these models.

8. Run the help-file example of the family function brat(). Show that the working residuals
are all zero (or zero to working precision, depending on the convergence criterion—can
you get the model to iterate even closer to the MLE?). Explain the theory behind why
this is to be expected. Are Pearson residuals defined when the working residuals are all
zero? Should summary.vglm() print out the working residuals if the Pearson residuals
are undefined?
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9. (a) Consider the standard random utility maximization model (RUM), with an indirect
utility function given by

Uij = ηij + εij (12)

with i = 1, . . . , n and j = 1, . . . , J . Then Uij is the utility that individual i
gains from outcome j. Let the observed individual characteristics be xi and the
characteristics of the outcomes be zij, then

ηij = xTi βj + zTijα. (13)

Finally, εij in (12) is assumed to follow an independent extreme value distribution.
The probability that individual i selects outcome j is given by

Pij = P [Uij = max(Ui1, . . . , UiJ)]

with choice set C = {1, 2, . . . , J}, and associated multinomial logit model proba-
bilities given by

Pm
ij =

exp(ηij)∑J
k=1 exp(ηik)

. (14)

(b) Write a vgam family function called dogit() to implement the dogit model. The
following description comes from Fry and Harris (2005). The multinomial logit
model imposes some strong restrictions on the model, most notably that of the
independence of irrelevant alternatives (IIA). The IIA property of the MLM says
that the odds ratio Pij/Pik, j 6= k, is independent of all other alternatives, and
independent of additions to, and deletions from, the full choice set. This can be an
unrealistic assumption.

Of the several non-IIA alternatives to the MLM proposed, the dogit model of Gaudry
and Dagenais (1979) is attractive. The dogit model expands on (14) by having

P d
ij =

exp(ηij) + θj
∑J
k=1 exp(ηik)(

1 +
∑J
k=1 θk

)∑J
k=1 exp(ηik)

. (15)

Here, θj ≥ 0 for j = 1, . . . , J . This can be motivated by a two-part choice process
(Fry and Harris, 1996).

Nb. Gaudry and Dagenais (1979) say that the IIA property of a model requires that
the relative probabilities of any two alternatives be independent of the attributes
of the remaining alternatives whether the latter are present or absent from the
set of available choices. This property, introduced by Luce (1959) to explain the
psychology of choice, was used by McFadden (1968) to derive the multinomial logit
model within a different theoretical framework. Gaudry and Dagenais (1979) call it
the “dogit” model because “the model avoids or dodges the researcher’s dilemma of
choosing a priori between a format which commits to IIA restrictions and one which
excludes them—whence its name.”

(c) Write a vgam family function called ogev() to implement the standard ordered
GEV model, whose probabilities are given by

P o
ij =

ξij
(
(ξi,j−1 + ξij)

ρ−1 + (ξij + ξi,j+1)
ρ−1
)

∑J+1
r=1 (ξi,r−1 + ξir)

ρ (16)

where ξij = exp(ηij/ρ) with the ηij given by (13), ξi0 = ξi,J+1 = 0 and 0 < ρ ≤ 1.
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(d) Write a vgam family function called dogev() to implement the DOGEV (dogit
ordered GEV) model whose probabilities are

PD
ij =

θj

1 +
∑M
k=1 θk

+
P o
ij

1 +
∑M
k=1 θk

. (17)

Note that in all models, the log-likelihood function is

`k(φ) =
n∑
i=1

J∑
j=1

dij logP k
ij

with k = m, d, o,D and model parameter vector φ = (β,α), (β,α,θ), (β,α, ρ),
and (β,α,θ, ρ) respectively, where β = (β1, . . . ,βJ). Here, dij = 1 if individual i
chooses outcome j, else dij = 0. Of course, one should use the zero argument to
make ρ intercept-only by default.

(e) Show that

P d
ij =

θj

1 +
∑J
k=1 θk

+
Pm
ij

1 +
∑J
k=1 θk

.
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