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[Important note: This document and code is not yet finished, but should be completed one day ...]

1 Introduction

This document describes in detail vGam family functions for a categorical response variable taking values
Y =1,2,...,M+1. Table 2 summarizes those current available. It is convenient to consider the two cases:
when Y is nominal (no order) and when Y is ordinal (ordered). An example of the latter is Table 1 where
the stages of a disease are Y = 1 for none, Y = 2 for mild, and Y = 3 for severe symptoms.

General references for categorical data include Agresti (1990), Leonard (2000), Lloyd (1999) and Mc-
Cullagh and Nelder (1989). Many of vGAM’s features come from glm() and gam() so that readers unfamil-
iar with these functions are referred to Chambers and Hastie (1993). Additionally, the vcGam User Manual
should be consulted for general instructions about the software. vGAM allows a categorical response to be
inputted as a vector of factors, or a n x (M + 1) matrix of counts. If the former, it will be converted to the
latter form. For more information, see Section 4.1.

2 Nominal Responses

The multinomial logit model is the most common model in this case. We describe this below, as well as a
variant called the stereotype model.



2.1 Multinomial logit model

The multinomial logit model (MLM), which is also known as the multiple logistic regression model or poly-
tomous logistic regression model, is given by

| expiny (@)
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> exp{m(z)}

=1

where

ni(e) = ﬁJT:c.

The model is particularly useful for exploring how the relative chances of falling into the response cate-
gories depend upon the covariates as p;(x)/pr(x) = exp {n;(x) — nx(x)}. Identifiability constraints, e.g.,
nu+1(x) = 0, are required by the model. This implies

VGAM fits the multinomial logit model using the family function multinomial (). It uses the last column
of the response matrix as baseline, or if the response is a factor, the last level. The special case of M =1
corresponds to logistic regression. The multinomial logit model is also related to neural networks and to
classification—see, e.g., Ripley (1996).

2.2 Stereotype Model

This model, which we sometimes refer to as the reduced-rank multinomial logit model, was proposed by
Anderson (1984) who described it as being suitable for all (ordered or unordered) categorical response
variables. The basic idea is that if M and p are even moderately large then the total number of regression
coefficients in the multinomial logit model will be large. One method of parsimony is to approximate the

Table 1: Period of exposure (years) and severity of pneumoconiosis amongst a group of coalminers.

Exposure Time | Normal | Mild | Severe

5.8 98 0 0
15.0 51 2 1
215 34 6 3
27.5 35 5 8
335 32 10 9
395 23 7 8
46.0 12 6 10
51.5 4 2 5




M x p matrix of regression coefficients by a lower rank matrix. In detail, the reduced-rank concept replaces
B =(By,...,8)" (without the intercepts) by

B = CAT (1)

where C = (c1¢2---¢;) ispxr, A=(araz---a,) is M x r and r (usually < min(M, p)) is the rank of A
and C. It is convenient to write

n;, = 170+ACT:1:Z- = ’I’]O—FAI/Z‘.

The stereotype model is a special case of a Reduced-rank VGLM (RR-VGLM). It may be fitted using
rrvglm() and multinomial (). See the other documentation regarding RR-VGLMs for more details.

It is well known that the factorization (1) is not unique as n, = n, + AM M~! v, for any nonsingular
matrix M. A common form of constraint which ensures A is of rank » and unique is to restrict it to the form

where A is a (M — r) x r matrix. In fact, any ~ rows of A may be chosen to represent I,.1. This method of
identifiability is implemented in vGAM.

3 Ordinal Responses

3.1 Models Involving Cumulative Probabilities

When the response is ordered the most common models involve the cumulative probabilities P(Y < j|x)
(see McCullagh (1980)), in particular, the proportional odds model is

logit P(Y < jlzg) = Byp+Bz, j=1,...,M.

! Actually, if the ‘wrong’ rows of A are chosen to represent |,,, then A may be ill-conditioned at the solution, or even failing to
exist.

Table 2: Quantities defined in vGAM for an ordinal categorical response Y taking values 1,..., M + 1. Covariates x
have been omitted for clarity.

./.

Quantity Notation | Range of j VGAM Family function
PY =j+1)/P(Y =j) G 1,...,.M acat ()
PY =5/PY =j+1) CJR 2,...,M +1 | acat(reverse=T)
PY > jlY > ) 7 1,...,.M cratio()
P(Y < jlY <j) J;R 2,...,M +1 | cratio(reverse=T)
P(Y <3j) VY4 1,....,.M cumulative()
P(Y >j) ’yJR 2,...,M+1 | cumulative(reverse=T)
log{P(Y =j)/P(Y =M +1)} 1,...,.M multinomial ()
P =j|Y >j) d; 1,....M sratio()
PY =j|Y <j) 5? 2,...,M +1 | sratio(reverse=T)




We call models of the form
logit P(Y < jl&g) = n; j=1,...,M

cumulative logit models as they involve the logit link function and cumulative probabilities. The proportional
odds model is a cumulative logit model with the parallelism assumption 8, = --- = 8,,. Itis well-known
that the parallelism assumption applied to a cumulative logit model results in the effect of the covariates on
the odds ratio being the same regardless of the division point j, hence the name proportional odds model
(this property is called strict stochastic ordering (McCullagh, 1980)). In practice, the parallelism assumption
should be checked; see, e.g., Armstrong and Sloan (1989), Peterson (1990). In general, the proportional
odds model is

If a complementary log-log link is chosen in (2) the result is known as the proportional hazards model. In
theory, any other link function used for binomial data such as the probit link can be applied to cumulative
probability models.

VGAM fits models based on cumulative probabilities using the family function cumulative (). It supports
a variety of link functions and the parallelism assumption g, = --- = B,, (or more generally, f)x(wx) =
-+ = fonk(zk)). For example,

vglm(y ~ x1, cumulative(link=probit, reverse=T, parallel=T), mydataframe)

fits the model
{P(Y > jlo)} = Bi-1) + bz, j=2,...,. M + 1.

3.2 Models Involving Stopping-ratios and Continuation-ratios

Quantities known as continuation-ratios are useful for the analysis of a sequential process, e.g., to ascertain
the effect of a covariate on the number of children a couple choose to have (Y = 1 (no children), 2 (1 child),
3 (2 child), 4 (3+ children)), or whether a risk factor is related to the progression of a disease (Y = 1 (no
disease), 2 (localized), 3 (widespread), 4 (terminal)). For such data, there are two ways of modelling the
situation—these are deciding whether to look at the probability of stopping at Y = 5 or continuing past

Table 3: Summary of whether parallel=Tever applies to the intercepts.

family= Default: parallel= | Apply to intercepts?
acat F No
cratio F No
cumulative F No
multinomial F Yes
sratio F No




Y = j, given that Y has reached level j in the first place. Which of the two is more natural depends on the
particular application.

Because there are differences in the literature Table 2 summarizes the vGAM definition of a continuation-
ratio, and also lists a quantity termed the stopping-ratio to help distinguish between the two types. Note
that, regardless of type, one sometimes wishes to reverse Y so that it is enumerated from M + 1, M,...,1
instead; this is handled by prefixing their name by “reverse,” e.g., 5f =PY=4Y<yj),j=2,....M+1
is called a reverse stopping ratio. Some authors use “backward” instead of “reverse” and “forward” if it is
not reversed.

For all the models listed in Table 2, vGAM supports a variety of link functions, the parallelism assumption

By = --- = By (or more generally, f),(zx) = --- = fank(zk)), and the zero= argument to constrain 7,
be be a intercept term only. To see the default values of these arguments use the args () function, e.g.,
args(sratio).

The quantities in Table 2 are all interrelated. The following formulae give some of these relationships.

Y = 1_7_71'{717 Yo = 07 TM+1 = ]-7 j:]-a"'aMa
pj .
0 = ————— j=1,..., M,
! L =71 ¢
of = B9 M41, §F =1,
Yi
1—;
O = 1-6 = —2 j=1,..., M,
! ! I =7 ’
6T = 1-py, 5?\4—{—1 =0,
SR = 1—6f = ML o M4,
Vi
01 = p1, dmyr = 1,
5TR = 0, 5?\/%1 = 1—=pum1

For further information on these models see, e.g., Armstrong and Sloan (1989).

3.3 Models Involving Adjacent Categories

Adjacent-category models are models for categorical data in the form

g(p]/p]-l-l) = 1y jzla"'aMa
for some link function g (log or identity because p;/p,,1 does not necessarily lie in [0, 1].) Reverse adjacent-
category models use

9(pj/pj-1) = mj—1, F=2,...,M+1.
4 Other Topics

4.1 Input

The response in vglm()/vgam() can be



1. an x (M + 1) matrix of counts. The columns are best labelled, and the jth column denotes Y = j.

2. a vector. The unique values, when sorted (or levels if a factor), denote the M + 1 levels from
1,...,M + 1. If a factor, it may be ordered or unordered. The functions factor(), ordered(),
levels(), codes () are useful; see the S-PLUS online help.

Note: if weights is used as input, then any zero values should be deleted first. For example, if n is a vector
containing zeros, then something like

vglm(..., weights=n, subset=n>0)

should be used.

4.2 Output

Suppose fit is a categorical VGAM object. Like binomialff (), the fitted values (in fitted(fit)) are
probabilities and fit@prior.weights contain the n; = 3777" y;;. However, fitted(fit) isan x (M + 1)
matrix, whose rows sum to unity.

4.3 Constraints

All categorical data family functions have the parallel and zero arguments. By default, parallel=F and
zero=NULL for all models. This means that to make the parallelism assumption one must explicitly invoke
it as such. The reason for this is that the parallelism assumption must be checked, and the software
discourages users from making assumptions without thinking. Unfortunately, the default values may fail on
some data, or lead to a large number of parameters.

Table 3 summarizes whether parallel=T is applied to the intercepts. Also, all categorical data family
functions have a reverse=F argument.

4.4 Implementation Details

The S-PLUS expression process.categorical.data.vgamprovides a unified way of handling the response
variable. The variable delete.zero. colns should be set to TRUE or FALSE prior to evaluating process.categorical.dat
in @initialize to handle columns of the response matrix that contain all 0's. In some situations these must
be deleted.
Similarly, the expression deviance.categorical.data.vgam computes the deviance for all the models
in this document.

4.5 Convergence

The vcam family functions described in this document use the type of algorithm described in McCullagh
(1980). He showed that a uniqgue maximum of the likelihood is guarenteed for sufficiently large sample
sizes, though infinite parameter values can arise with sparse data sets containing certain patterns of zeros.
Usually, one obtains rapid convergence to the MLEs.



4.6 Over-dispersion

Over-dispersion for polytomous responses can occur just like it does for binary responses (see documen-
tation on GLM and GAM vGam family functions). Sec. 5.5 of McCullagh and Nelder (1989) use

6% = X?/{nM —p} = X?/{residual d.f}, (3)

where X? is Pearson’s statistic. They state that this is approximately unbiased for ¢2, is consistent for large
n regardless of whether the data are sparse, and is approximately independent of the estimated ﬁ
Following GLM and GAM-type vGAM family functions, categorical family functions might one day have
a dispersion argument. The default for all will be 1, and if set to 0, it will be estimated using some formula.
Note that summary () uses a generalization of the Pearson statistic, which reduces to (3) for some models.

4.7 Relationship with binomialff ()

VGAM can fit to binomial responses using binomialff (), which is incompatible with glm() and gam().
If y is a vector of 0’'s and 1's then simple logistic regression can be performed as follows:

1. glm(y ~ ..., family=binomial)

2. vglm(y ~ ..., family=binomialff)

3. vglm(l-y ~ ..., multinomial, ...),

4. vglm(cbind(y,1-y) ~ ..., multinomial, ...),
5. vglm(y ~ ..., cumulative(rev=T), ...).

These hold because the final level is used as the baseline category for the MLM.

4.8 The xij Argument

The xij argument allows for covariate values that are specific to each n;. For example, suppose we have
two binary responses, Y; = 1 or 0 for presence/absence of a cataract, where j = 1,2 for the left and right
eyes respectively. We have a single covariate, called ocular pressure, which measures the internal fluid
pressure within each eye. With data from n people, it would be natural to fit an exchangeable bivariate
logistic model:

logit P(Yy; = 1zi5) = PBay +Banzij, =12 i=1...,m
log ¥ = By, (4)

where the dependency between the responses is modelled through the odds ratio +. Note that the regres-
sion coefficient for z;; and z;2 is the same, and z;; # x;2 in general.

Another example is if you were an econometrician interested in peoples’ choice of transport for travelling
to work. Suppose Y = 1 means bus, Y = 2 means train, Y = 3 means car, and Y = 4 means walking to



work, and that we have two covariates: X; = cost, and X, = journey duration. Suppose we collect data
from a random sample of n people from some population, and that each person has access to all these
transport modes. For such data, a natural regression model would be a multinomial logit model with M = 3.

log{P(Y:j)/P(Y:M-l-l)} =1n; = ,8(]')0+,81-'L'i1j+,82$i2ja jZl,...,M,

where z;1; is the cost for the jth transport means for the ith person, and z;9; is the journey duration of the
jth transport means for the ith person. Note again that the regression coefficients g, and 3y are the same.

To fit such models in VGAM one needs to use the xij argument. See the documentation elsewhere
concerning this important feature.

4.9 Reduced-rank Regression

A RR-VGLM (reduced-rank VGLM) replaces the (large) M x p coefficient matrix BY by A cT, where A is
M xrand Cisp x r, r < min(M, p). The application to the multinomial logit model is only one special
case. For more details, see Yee and Hastie (2003).

Examples supplied included are rrvam(), rrcumulative (), and rracat (). The alternating algorithm is
performed using the function valt ().

5 Tutorial Examples

In this section we illustrate some of the models. We will make use of the pneumoconiosis data in Table 1
(see McCullagh and Nelder (1989)). Recall the ordinal response is the severity of pneumoconiosis in
coalface workers (categorized as 1 = normal, 2 = mild pneumoconiosis, 3 = severe pneumoconiosis) and
the covariate is the number of years of exposure. In fact, in the following, we use z = log(exposure time).

5.1 Multinomial logit model

Although Y is ordinal for the pneumoconiosis data, we fit the multinomial logit model for the sake of illus-
tration.

> data(pneumo)
> pneumo$let <- log(pneumo$exposure.time)
> fit.mlm <- vglm(cbind(normal,mild,severe) ~ let, multinomial, pneumo)
> coef (fit.mlm, matrix=T)
(Intercept) let
log(mul,1]/mul,31) 11.975092 -3.0674665
log(mul,2]/mul,3]) 3.039062 -0.9020936
> summary(fit.mlm)

Call: vglm(formula = cbind(normal, mild, severe) ~ let, family = multinomial, data =
pneumo)

Coefficients:
Value Std. Error t value



(Intercept):1 11.9750920
(Intercept):2  3.0390622
let:1 -3.0674665
let:2 -0.9020936

2.0004445 5.986216
2.3760683 1.279030
0.5652065 -5.427161
0.6689816 -1.348458

Number of linear predictors: 2

Names of linear predictors: log(mul[,1]/mu[,3]), log(mul,2]/mul,3])

(Dispersion Parameter for Multinomial logit model family taken to be 1)

Residual Deviance: 5.347382 on 12 degrees of freedom

Number of Iterations: 4

Note thatmul[j,] is the jth column of the matrix of fitted values. The estimated variance-covariance matrix
of the regression coefficients is summary (fit.mlm)@cov.unscaled (if the dispersion parameter is unity), or

more elegantly, vcov(fit.mlm).

5.2 Stereotype model

In the following, fit1 fits a rank-1 stereotype model.

> fitl = rrvglm(cbind(normal,mild,severe) ~ let, multinomial, Rank=1, pneumo)

> fitl@constraints
$" (Intercept)":
[,11 [,2]
[1,] 1 0
[2,] 0 1

$let:

[,1]
[1,1 1.0000000
[2,1 0.2940857

> coef (fit1l)

(Intercept):1 (Intercept):2 let
11.9751 3.03908 -3.067469

> coef (fitl, matrix=T)

(Intercept) let
log(mul,1]/mu[,31) 11.97510 -3.0674690
log(mul,2]/mul[,31) 3.03908 -0.9020987

That is, A = fit1@constraints$let = (1,0.2940857)7 and C = (—3.067469). Note that coef (fitil,
matrix=T) looks very similar to fit.mlm above—it should be! This is because this RR-MLM is exactly
the same model as the MLM because the rank equals the number of covariates which is one. It is like a

saturated reduced-rank model.
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5.3 Proportional odds model

Page 179 of McCullagh and Nelder (1989) fit a proportional odds model to the pneumoconiosis data. They
concluded that the logarithm of exposure time was strongly preferred to simply exposure time, and fitted
the model

logit 4;(z;) = &; — B log(exposure time;), i=1,...,8, j=1,2.
We can fit this by
fit.pom <- vglm(cbind(normal,mild,severe) ~ let, cumulative(par=T), pneumo)

Then coef (fit.pom, mat=T) gives the matrix of regression coefficients

(Intercept) let
logit (P[Y<=1]) 9.676124 -2.596816
logit (P[Y<=2]) 10.581756 -2.596816

which agrees to that of McCullagh & Nelder. coef (fit.pom) is recommended over using fit.pom@coefficients,
which, for this example, is the vector (&, Go, B)T. The general enumeration of the elementsin @coefficients
is given in the vGAM User Manual.

Typing summary (fit.pom) gives

Call: vglm(formula = cbind(normal, mild, severe) ~ let, family = cumulative(par = T),
data = pneumo)

Coefficients:
Value Std. Error t value
(Intercept):1 9.676124 1.3241658 7.307336
(Intercept):2 10.581756 1.3455201 7.864435
let -2.596816 0.3811267 -6.813525

Number of linear predictors: 2

Names of linear predictors: logit(P[Y<=1]), logit(P[¥Y<=2])

(Dispersion Parameter for Cumulative logit model family taken to be 1)
Residual Deviance: 5.026826 on 13 degrees of freedom

Number of Iterations: 3

Now one can formally test the proportional odds assumption by a likelihood ratio test. This can be done
by

> fit.npom <- vglm(cbind(normal,mild,severe) ~ let, cumulative, pneumo)
> 1-pchisq(deviance(fit.pom)-deviance(fit.npom),

df=df .residual (fit.pom)-df.residual (fit.npom))
[1] 0.7058849

There is no evidence against the proportional odds assumption.

11



5.4 Stopping Ratio Model

Page 88 of Fahrmeir and Tutz (1994) fit a “sequential logit” model to some tonsil data. The data is re-
produced in Table 4, and has been examined by, e.g., McCullagh (1980). It is assumed that tonsil size
starts off in the “present but not enlarged” form, and then can become enlarged, and then possibly “greatly
enlarged.” Thus a sequential model such as the stopping ratio model maybe appropriate.

We reproduce the results of column 2 of Table 3.6 of Fahrmeir and Tutz (1994) by the following. Note
that the variable carrier here takes on values —1 and 1, rather than the usual 0 and 1.

y = matrix(c(19, 29, 24,
dimnames(y) = list(NULL,

carrier = c(1, -1)
y

VvV V 4+ Vv VvV

497, 560, 269), 2, 3, byrow=T)

c("present but not enlarged", "enlarged", "greatly enlarged"))

present but not enlarged enlarged greatly enlarged

[1,] 19 29
[2,] 497 560

24
269

> fit = vglm(y ~ carrier, sratio(par=T, rev=F), tr=T, crit="c")

VGLM linear loop 1 : coefficients
-0.77522, 0.46797, -0.26421

VGLM linear loop 2 : coefficients
-0.77525, 0.46795, -0.26423

VGLM linear loop 3 : coefficients
-0.77525, 0.46795, -0.26423

VGLM linear loop 4 : coefficients
-0.77525, 0.46795, -0.26423

> fit

Call:

vglm(formula = y ~
tr = T, crit = "c")

Coefficients:
(Intercept):1 (Intercept):2 carrier
-0.77525 0.46795 -0.26423

Degrees of Freedom: 4 Total; 1 Residual

Residual Deviance: 0.0056573
Log-likelihood: -1477.6
> coef (fit, matrix=T)

carrier, family = sratio(par = T, rev = F),

logit (P[Y=1]Y>=1]) logit(P[Y=2]|Y>=2])

(Intercept) -0.77525

0.46795

Table 4: Tonsil data. The size of the tonsil is cross-classified as to whether the child was a carrier of Streptococcus
pyogenes. The data was collected from 2413 healthy children (Holmes and Williams, 1954).

Carrier? || Present but not enlarged | Enlarged | Greatly enlarged
Yes 19 29 24
No 497 560 269

12



carrier -0.26423 -0.26423
> summary(fit)

Call:
vglm(formula = y ~ carrier, family = sratio(par = T, rev = F),
tr = T, crit = "c")

Pearson Residuals:
logit(P[Y=1|Y>=1]) logit(P[Y=2]|Y>=2])

1 0.0510 -0.0524
2 -0.0108 0.0141
Coefficients:

Value Std. Error t value
(Intercept):1 -0.775 0.1061 -7.31
(Intercept):2 0.468 0.1116 4.19
carrier -0.264 0.0989 -2.67

Number of linear predictors: 2

Names of linear predictors: logit(P[Y=1|Y>=1]), logit(P[Y=2]Y>=2])
Dispersion Parameter for sratio family: 1

Residual Deviance: 0.006 on 1 degrees of freedom

Log-likelihood: -1477.6 on 1 degrees of freedom

Number of Iterations: 4

The linear predictors and fitted values can be obtained as follows.

> predict(fit)
logit(P[Y=1|Y>=1]) logit(P[Y=2]|Y>=2])
1 -1.03948 0.20372
-0.51102 0.73218
> fitted(fit)
present but not enlarged enlarged greatly enlarged
1 0.26125 0.40687 0.33188
2 0.37495 0.42208 0.20296
> fitted(fit) * fit@prior.weights
present but not enlarged enlarged greatly enlarged
1 18.81  29.295 23.895
497.19 559.682 269.128

6 Other Software

There are several other R/S-PLUS implementations for fitting categorical regression models. polr in library
MASS fits cumulative logits, but as it is written in S it can easily be altered to allow for a probit link (change

13



pnorm to plogis, dnorm to dlogis, and alter the glm call to use probits.)
J. Lange has written software, and there is the DESIGN/HMISC library of F. Harrell.

7 Yet To Do

Things yet to be done include

1. Allow for a dispersion parameter. Currently this is possible for GLM-type family functions. A unified
and uniform way of handling these is to have dispersion=0 or dispersion=1. It is easy to modify
existing vGAM family functions, but this hasn’t been done yet—the theory is undeveloped.

2. Improvement to biplots of RR-VGLMs are needed.
3. RR-VGAMs are yet to be implemented. This involves vector projection pursuit regression.

4. Investigate vector smoothing subject to the constraint that the component functions never intersect.
This would mean the non-parametric cumulative logit model would not have problems with negative
probabilities etc.

Exercises

1. McCullagh (1980) proposed the following model which incorporates dispersion effects:

. o T
P(Y <jlo) = G (M) |

Tx

where G is the cdf of some continuous distribution such as the logistic distribution. Write a VGAM
family function to fit this model. It should allow the logit, probit, complementary log-log and identity
links, as well as the usual parallel and reverse and zero options.

2. For the multinomial logit model show that Fisher scoring is equivalent to Newton-Raphson. To do
this, show that the likelihood score vector d; = n;(y} — p}), and W; = n;(diag(p}) — pp;T), where
y: = (Yi1,-..,Yim)’ are sample proportions, n; = Zjﬂf{l yi; 1S the number of counts with ;, and

pi = (pir,---,pin)T = E(y}) are fitted probabilities. The asterix here is used to denote that y is y;

with y; 741 dropped. Here, d; = 0¢;/0n;, £ = Y, £; is the log-likelihood, and W; = —82¢;/(0n onT).
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