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[Important note: This document and code is not yet finished, but should be completed one day . ..]

Nb. Many of the vGAM family functions documented here were written by Ziming Guan, a Science
Faculty summer scholar during 2001-2002. T. Yee hasn’t had time to check them out, but hopes to
do so soon.

1 Introduction

This document describes in detail vGam family functions for nonlinear regression. Many of vGAaM’s features
come from glm() and gam() so that readers unfamiliar with these functions are referred to Chambers and
Hastie (1993). Additionally, the vGamM User Manual should be consulted for general instructions about the
software.



Consider the model
}/i = f(uz,0)+€z, i:]-a"'aln'a (1)

where @ is an M-vector of unknown parameters, the ¢; are assumed to be i.i.d. N(0,0?) and the relationship
f(u;; @) is nonlinear. Eqgn (1) is the general form of a nonlinear regression model, and may be fitted using
VGAM. See Table 1 for examples that have been implemented in vGAM. Nonlinear regression is a big topic
and often requires specialist skills and knowledge. Books in this area include Seber and Wild (1989) and
Bates and Watts (1988). We shall only look at a very few topics in this area.

1.1 Why use VGAM?

The primary S-PLUS function for nonlinear regression is n1s () (for nonlinear least squares), which chooses
6 to maximize

1 n
Loy = —5 > wi (i — f(ui30))° 2)
i=1
where the w; are known positive weights(so that Var(e;) = 02/W;). The deviance
n
D = ) wi(yi— f(us9))?, 3)
i=1

the (weighted) residual sum of squares. nls (), which uses a Gauss-Newton algorithm, is very convenient
as it can make use of deriv() for computing derivatives. A typical usage is (it fits the Michaelis-Menten
model)

> Treated = Puromycin[Puromycin$state == "treated", ]

Treated[1:3,]

conc rate state

0.02 76 treated

0.02 47 treated

0.06 97 treated

Purfitl = nls(rate ~ Vm*conc/(K + conc), Treated, list(Vm=200, K=0.1))
summary (Purfitl)

\2

vV V.WN=

Formula: rate ~ Vm * conc/(K + conc)

Parameters:

Estimate Std. Error t value Pr(>|t])
Vm 2.127e+02 6.947e+00 30.615 3.24e-11 **x*
K 6.412e-02 8.281e-03 7.743 1.57e-05 *xx*

Signif. codes: 0 ‘*xx’ 0.001 ‘*x*’ 0.01 ‘%’ 0.05 .’ 0.1 ¢ *> 1

Residual standard error: 10.93 on 10 degrees of freedom

LIn this section it is more convenient to use u to denote the regressors rather than the usual «.



Correlation of Parameter Estimates:
Vm
K 0.7651
So what advantages has VGAM over nls()? Here are a few:

1. vGAaM allows one to write a specialized family function for a specific nonlinear regression model. Con-
sequently it can be made more robust and efficient, as well as make use of more clever techniques
for obtaining initial values etc, i.e., they are self-starting. Sometimes several different algorithms for
obtaining starting values are implemented in he same family function.

2. deriv() only works for a restricted range of functions. It has not the capabilities of, e.g., MATLAB,
MAPLE, etc., which one who programs vVGAM family functions can exploit.

3. VGAM can fit models that n1s () can't, e.g., when the response is multivariate. Here are some exam-
ples.

(a) Galambos and Cornell (1966) considered the compartmental model
yir | _ 01 exp(—b2z;) + (1 — 61) exp(—b3z;) L[ e
Yi2 1-— (91 + 94) exp(—agzi) + (91 + 64 — 1) eXp(—Hg.’L'i) Ei2 ’
E(e;) =0, Var(e;) = X i.i.d., involving radioactive sulfate as a tracer.
(b) Gallant (1975) considered

Yil | 01+ b2 w511 + 13 exp(014 zi12) €1
= + ,
Yi2 021 + O20 exp (a3 :2) Ei2
E(g;) =0, Var(e;) = X i.i.d.
(c) Bates and Watts (1988) (p.166) considered

( 67(01+02)t
Yi1 ) €1

) = 61 _ —(61+62)t + ( . ) )
Yi2 0, + 0, [1 € ] &2

E(g;) = 0, Var(e;) = ¥ i.i.d., for some thermal isomerization data.

Multivariate responses are discussed in Section 3.

2 Nonlinear Least Squares and the Gauss-Newton Algorithm and VvGAMS

2.1 Univariate Responses

It is possible to coerce vGAM to implement the Gauss-Newton algorithm. This algorithm is well-known for
nonlinear least squares problems, and some of its details now follows. We first look at univariate response.
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We have

oo = O wil— (i) oo, @

_E[ a?z] & ofs of;
06 06"
®)

the latter due to E(g;) = 0. Letting

on

T
of o6
Fo = 997 = : )

Ofn

06"
W = Diag(w1,...,w,) and f = (f1,..., f»)T, the Fisher-scoring algorithm for maximizing £(8) is of the
form

glatl) _ gla) | (Fsa)TWFSa)) ' E@T \y (y _ f(a)) . (6)
This is the Gauss-Newton algorithm. It can be seen that 8(**1) is the solution to the least squares problem

FU0W 4+ (y—£@) = FV0 ) be,  Var(e) =W, (7)

Thus Gauss-Newton involves regressing residuals on the design matrix F%. Note that only first order
derivatives are needed for this method.
For VGAM, extensions of the above are needed. One models 8 through 8 = (87,...,8%,)T using

9;0;) =n; = Bz, j=1,...,M,

where g; are parameter link functions and x is often just a 1. That is, in general, each parameter may be
modelled as a linear combination of some predictor variables.
One has F, ; whose ith row is
ofi _ 0fi08; On;  0fi 08; 1

= = ;.
3‘[3;"1 00; On; BIB;F 00; on;

Thus F,; = Wj X; where W7 is a diagonal matrix and X; is the usual design matrix for 7;. This allows for
constraints—on—the—functions. Then

B oH N~ Ofi Of
E[aﬂjaﬂ;{] = 298, gt

i=1

SO
Bl — g 4 (FE")TWFS“))_1 FOTw (y - 1),
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where

of
F. — al‘ﬁ — (Fol"'FoM)
—  (WIWE...W2,) Diag(X1,. .., Xu). 8)

Thus one can obtain 8(%*1) by solving the least squares problem
F% 8@ 4 (y - f(“)) = FWB0EH) 4g  Var(e) =W L (9)
Substituting (8) into (9) gives
(W W3 .. W3,) Diag(Xy ... Xu) 8@ + (y _ f<a)) =
(W W3 ... W,) Diag(Xy . .. Xpr) Bt + e (10)

This fits within the vGam framework only for M = 1 because one can then premultiply both sides of (10) by
W‘{_l. The result would then be to regress the adjusted dependent vector

zi = XB@ 4 (Wi lwwi) (Wiw (y— f(“)))

with weight Wi W W7 on X. For M > 2 we employ a trick. Suppose M = 2. Then we can ‘add’ an additional
equation by solving, say,

W W5 X; O (a) _ @) _
(o \/X|n>(o x2>ﬂ t1e(y-f) =

Wi W3 X1 O ) (et 1
=1 W™,
( o Vi, ) ( 0 X ),3 + €, Var(e) =l ®

If we let A(®) — 0 then this reduces to the ordinary Gauss—Newton equation we wish to solve. In practice
we let A(@ become very small but never identically zero.

For general M we replace the matrix (W7 W5 ... W3,) in (10) by ‘adding’ a \/Wln(M,l) matrix below it.
The result is a (square) invertible matrix, W,,, say. Then, if we replace y — £ by 1;; ® (y — f(“)), we

can premultiply (10) by W;*l to obtain

B
Diag(X1, ..., Xu).- +w! (1M ® (y — f(a))) — plat)) L g0

(a)
M

Var (eS:?) — [W*T* (It ® W) W**] -



It is left as an exercise to the reader to verify that
wi + V@)
ot _ (- 1) wly + VAW
an = Wi \Ys
why + VAW

(which is returned by @deriv) and

0%
—E( i ) = wi (wijwi, + 521G > 1)),
on on™ jk P\ !
which is returned by @weight. That is, the outer-product of a w} vector with A\(+) on all the diagonals
except for the 1-1 element. All this can be simply programmed into a VGAM family function for a nonlinear
regression model.
Here are some notes:

1. ‘Adding’ a v/l to the (W3, ... W?%,) matrix can be generalized to ‘adding’ any diagonal block matrices
so that the result is invertible. The choice above was made for simplicity.

2. It appears that that choice produces similar results to the Levenberg—Marquardt method. It is, how-
ever, not the same.

3. M@t = max(\(®) /divisor, .Machine$double.eps) in VGAM family functions for nonlinear regression

models. A simple method is to allow A() = 0.01, divisor= 10. On many machines, .Machine$double.

is approximately 1 x 10716, Both A(!) and divisor are arguments in a vGAM family function for non-
linear regression.

4. Exercise Another choice is to replace (W7 ...Wj,) in (10) by 15y ® (W7 ... W},) + Alpas. Then,

as an exercise, show that
ov; o (a) .
(Bn)j = wi (i — 1) (Mw +3)

and

(W) = wi [(wij + Nwjy, + (wiy, + Nwjj + (M — 2wjwy], j#k M>2,
(Wo)j5 = wi |l + 02+ (M = wy] .

This is more complicated than the first choice.

In general, the standard errors are
N -1
var(3') = o2 (F,TWF.)

evaluated at 6.

eps



2.2 Levenberg-Marquardt Modification

Here are some miscellaneous notes about the Levenberg-Marquardt modification. The unmodified G-N
algorithm is rarely used. To improve the chances of convergence in the basic Gauss-Newton algorithm, one
popular method is the Levenberg-Marquardt modification. The Levenberg-Marquardt modification involves
adding a A(@)1, term to the inverse term in (6), viz.,

plat) = @ 4 (FE“)T WF® 4 \@ |) RO (y - f(“)) ,

where A(@) > (s a ridge parameter that may change with the iteration number ¢. Sometimes
A+ — (@) /divisor.

It is used to handle ill-conditioning due to the columns of 9f /90 being collinear, or nearly so, bad initial val-
ues. A sequence that decreases to zero corresponds to the ordinary Gauss-Newton step, while a sequence
that increases to infinity corresponds to steepest descents.

A vGaM family function with a rpar argument corresponds to the initial and divisor is A.

The effect of adding Al is to make the matrix whose inverse is required less singular, and it shortens
the step 8(®*D) — 9(2) The result interpolates between the G-N step (A — 0) and the steepest—descent
direction (\@ — o0). If A(@) is too large for too many iterations the algorithm will take too many steps and
thus make little progress.

For A(@) > 0, (FS“)TW F9 + A@)) is positive—definite, so the step will be a descent direction.

The success of the L-M modification depend, nearly on the appropriate choice of the diagonal matrix
that is to be added.

3 Multivariate Responses

In this section we state the results for the multivariate extension of Section 2.1. The model is how
Y, = f(u;0)+e;, i=1,...,n, €;~ Ny0,%;) independently.

Then
L) = - (yi — £ (ui;0))" =7t (y; — f(us30)),

=1

1
2

the deviance D = }° (y; — f(ui; 0)" = (y; — f(us; 8)), and Equations (4) and (5) generalize to

i
=1

SR N} .
8 = 2. 20 3, (y,- — f(ui;9)),
2 n T :
E [ ) ET] =Y Dslh
86 06 06 * 00

=1



Letting W; = X; 1,

9f1
00T

F' = % = ’
Ofn
00T

W = Diag(W1,...,W,), y = (¢7,...,y0)T and f = (f7,..., fE)T, then the Fisher-scoring algorithm for
maximizing £(8) is of the form

6+ = 9@ 4 (FOTWED) T I w (y - £@).

Usually, X is unknown, and has to be estimated. This may be done (Gallant, 1987) by

5@ - %2_; (- 7) (- 1)

To save a long story, the algorithm is identical to (9) with the above extension of notation. VGAM uses
an x M matrix to represent y — f(“), and because z; is computed as n; + Wi‘ldi, @deriv premultiplies
di=y; — fga) by W; in order to achieve the correct adjusted dependent variable.

4 Models

This section describes models currently implemented by vGAM that mainly Z. Guan has written. They are
summarized in Table 1. Yet to do is to implement all the models listed in Ratkowsky (1990).
4.1 Michaelis-Menten function

This model is described on p.520 of Pinheiro and Bates (2000). The program works well.

For more about this model, see JASA 98: 679—686. H. Dette and S. Biedermann, 2003. Robust and
efficient designs for the Michaelis-Menten model. This article contains the Fisher information matrix of a
transformed model of the Michaelis-Menten model.

4.2 Shinozaki-Kira function

This model is described on p.362 of Seber and Wild (1989). The program works well.

4.3 Holliday function

This model is described on p.362 of Seber and Wild (1989). The program works well.

4.4 Bleasdale Simplified function

This model is described on p.362 of Seber and Wild (1989). The program works well if value of 83 is < 2
apart from real value.
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Table 1: Summary of nonlinear regression models Y = f(u; 6) + € currently supported by VGAM.

Name f(u;0) Range of y® | Range of 8° | vcam family function | Working? | Initialization
Michaelis-Menten b1u micmen () Yes Median of data

0o +1u
Shinozaki-Kira - skira() Yes WLS®

01 +60,u
Holliday (61 + O u + O3 u%) holliday() Yes WLS
Bleasdale Simplified | (61 + 6, u)~'/% bsimp () Yes WLS
Farazdaghi-Harris (01 + 0 u%) ! fharris() Yes WLS
Bleasdale-Nelder ;1 bnelder () No WLS

(01 + 65 uf4 ) 3

u
Nelder[1961] 0 00t O nelder61() Yes WLS
Gompertz 01 exp(— exp(Oa(u — 603))) gomp () Yes LSF
Monomolecular 01(1 — 63 exp(—63u)) monomo () Yes LSF
. 01
Auto logistic tocat Ye WLS
uto logisti (1+02€Xp(_93)u)) autocata() es
. 01— 0
Morgan-Mercer-Flodin | 8, — ——=5— mmf () No WLS
’ '+ (Bsw)™)
Makeham'’s second 01+ 6,05 03 € (0,1) makeham () Yes LSF
Cook and Witmer O1u+02(1—u) (—00,0) (—o00,00) cwitmer () Yes LSF
Weibull 1 — exp(—ufV (0, 1) (—00, 00) weibull.nl() No Undecided
. .. CXp(91 + u92) . .
G lized logist 1 - 1 N Undecided
eneralized logistic (1 F oxp(01 + uba)) (0, 1) (—o0,00) ogi() 0 ndecide

Asymp Reg thru O 01(1 — exp(—exp(62)u)) | (—o0,0) (—00,00) asyreg0() Yes WLS

30 < y < oo and y real-valued is assumed unless otherwise stated.
®) < §; < oo and 6; real-valued is assumed unless otherwise stated.
‘WLS=weighted least squares; LSF=least squares fit.




4.5 Farazdaghi-Harris function

This model is described on p.362 of Seber and Wild (1989). The program works if initial value of 85 is close
to real value, and real value of 63 < 2.

4.6 Bleasdale-Nelder function

This model is described on p.362 of Seber and Wild (1989). The program has 4 parameters and does not
converge.

4.7 Nelder[1961] function

This model is described on p.167 of Hunt (1982). The program works well.

4.8 Gompertz function

This model is described on p.331 of Seber and Wild (1989). The program works if initial value of 3 < 1.5.

4.9 Monomolecular function

This model is described on p.123 of Hunt (1982). The program works.

4.10 Auto logistic (Autocatalytic) function

This model is described on p.330 of Seber and Wild (1989). The program works, but returned values are
not quite accurate expecially ;.

4.11 Morgan-Mercer-Flodin function

This 4-parameter model is described on p.340 of Seber and Wild (1989). The program does not converge.

412 Makeham’s second modification function

This model is described on p.10 of Seber and Wild (1989). The program works well.

4.13 Cook and Witmer’s function

This model is described on p.136 of Seber and Wild (1989). The program works well.

4.14 \Weibull function

This model is described on p.338 of Seber and Wild (1989). The function has only one parameter so cannot
use WLS to get the initial value. Although manually allocate an initial value, the program doesn’t work.
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4.15 Generalized logistic function

This model is described on p.339 of Seber and Wild (1989). The program is not working as it does not
converge. The initial values of this function are hard to obtain.

4.16 Asymptotic Regression function through the origin

This model is described on p.513 of Pinheiro and Bates (2000). This program works, but returned value of
0 is close to initial value rather than real value. There is no problem with returned value of ;.

5 Other Topics

5.1 Estimation of the Dispersion Parameter

vGAM family functions for nonlinear regression models have a component $summary.dispersion = FALSE
which tells summary.vglm() and summary.vgam() that the general VGAM formula for estimating the disper-
sion parameter (involving the residual sum of squares) is not valid. Thus the dispersion parameter must be
estimated by the family function itself during fitting. The code for this is found in $1last, and

n
&> =Y wilyi — f)*/(n —p")
i=1
where p* = dim(3) is the number of parameters.

5.2 Richards Results

See the vGAM User Manual for more info.

5.3 wvgam() and Nonlinear Regression

Can vGAM family functions for nonlinear regression models use vgam()? The answer is not yet! For
example, one would want

vgam(y ~ s(x), micmen, regressor=u)
vglm(y ~ bs(x, 4), micmen, regressor=u)
both fit (@)
1\r)u
Y, = —F—~+— +¢;
"o fel@)

where f1 and fy are estimated by splines or a regression spline. Also,

vgam(y ~ s(x), micmen, regressor=u, constraints=list(rbind(1,1)))

ought to fit constrain f1 = fo, i.e.,
_ f@u
o fE) e

where f is estimated by a spline. But unfortunately, there is a bug in the program that needs to be fixed.

12



Table 2: Enzyme velocity (y) and substrate concentration (u). Source: Watts (1981).

u Y u Y
2 0.0615 || 0.286 | 0.0129
2 0.0527 || 0.286 | 0.0183

0.667 | 0.0334 || 0.222 | 0.0083
0.667 | 0.0258 || 0.222 | 0.0169
0.40 | 0.0138 | 0.2 0.0129
0.40 | 0.0258 || 0.2 0.0087

5.4 Input

If y, is multivariate then y should be a n-row matrix.

6 Tutorial Examples

In this section we illustrate fitting a nonlinear regression model or two.

6.1 The Michaelis-Menten model

Initial values and has been fitted to the enzyme data of Table 2. This model relates the rate of formation of
product (Y = enzyme velocity) in an enzyme-catalyzed chemical reaction to the concentration of substrate
u. To keep things simple, an identity link will be used for the two parameters, and also they will be modelled

as intercepts. One has
ofi _ i ofi _  —61u
004 0 + ui’ 005 (02 + ui)2 '

vGAM will fit the model to the data with

0.08

0.06

0.04

0.02

Figure 1: Fitted skira () model to sk.df.
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data(enzyme)

fit = vglm(velocity ~ 1, micmen, regressor=enzyme$conc,
data=enzyme, trace=TRUE, cri="coef")

summary (fit)

The true solution is # = (0.10579,1.7077)7.

6.2 skira() Model

We apply skira() to some artificial data. We generate a data set called sk.df, which has variables of skx
and sky:

n = 50

xxx = seq(1,10,length = n)
sk.tl = 4

sk.t2 =7

set.seed(12)

err = rnorm(n, sd = 0.005)

sk.df = data.frame(skx = xxx, sky = 1/(sk.tl+sk.t2*xxx)+err)
plot(sk.df$skx, sk.df$sky, xlab="x", ylab="y")

Then type in the following commands in R to call function skira():

> sk.fit = vglm(sky ~ 1, skira, data = sk.df,
tr = T, crit = "c", regressor = sk.df$skx, eps=1e-8)

VGLM linear loop 1: coefficients=c(4.958520, 6.543171)
VGLM linear loop 2: coefficients=c(5.035916, 6.499976)
VGLM linear loop 3: coefficients=c(5.065323, 6.483631)
VGLM linear loop 4: coefficients=c(4.669438, 6.715736)
VGLM linear loop 5: coefficients=c(4.361027, 6.899345)
VGLM linear loop 6: coefficients=c(4.312516, 6.929454)
VGLM linear loop 7: coefficients=c(4.310033, 6.931002)
VGLM linear loop 8: coefficients=c(4.309851, 6.931114)
VGLM linear loop 9: coefficients=c(4.309802, 6.931144)
VGLM linear loop 10: coefficients=c(4.309786, 6.931154)

VGLM linear loop 11: coefficients=c(4.309783, 6.931156)
VGLM linear loop 12: coefficients=c(4.309783, 6.931156)
> lines(xxx, fitted(sk.fit), col=4)

This produces Figure 1. One can input initial values for any of the parameters, for example, using an initial
0y =5,

> vglm(sky ~ 1, skira(init2=7), data=sk.df, regressor=sk.df$skx, tr=T, cri="c")
VGLM linear loop 1: coefficients=c(4.131284, 7.024765)

VGLM linear loop 2: coefficients=c(4.148627, 7.030046)
VGLM linear loop 3: coefficients=c(4.146189, 7.031542)
VGLM linear loop 4: coefficients=c(4.234216, 6.977449)
VGLM linear loop 5: coefficients=c(4.301759, 6.936048)
VGLM linear loop 6: coefficients=c(4.310205, 6.930901)
VGLM linear loop 7: coefficients=c(4.310010, 6.931017)
VGLM linear loop 8: coefficients=c(4.309851, 6.931114)
VGLM linear loop 9: coefficients=c(4.309802, 6.931144)
VGLM linear loop 10: coefficients=c(4.309786, 6.931154)

14



gives the same result.

7 Discussion

The connection between IRLS for maximum likelihood estimation and the Gauss-Newton method for solving
least squares problems is described in Wedderburn (1974).

Unmodified Gauss-Newton and Newton-Raphson algorithms are unpractical for computing least squares
estimates. There are a range of techniques to make the algorithms more reliable, e.g., Levenberg-Marquardt
methods, and step-halving. vGAM only implements the latter, and further investigation is needed on whether
the L-M algorithm can be implemented within the vGAM framework.

S-PLUS has the functions ms () and nls() for minimizing a sum of squares and nonlinear least squares.
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Exercises

1. Fix up the vGAM family functions described in this document that don’t work, and improve those that
do work.

2. Fix up the bug described in Section 5.3.
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