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Preface

The beginning is the most important part of the work.
—Plato

This document contains complementary material for Yee (2015). Over time, I
hope to add more and more content, especially regarding practical matters as a
consequence of changes to the VGAM package.

Thomas Yee
Auckland, New Zealand

History is written by the victors.
—Winston Churchill
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Chapter 1

Complements: Introduction

1.1 New names for link functions

In January 2019 VGAM 1.1-0 renamed many link functions so that they all end in
“link”, e.g., loglink() is a copy of loge(), logitlink() is a copy of logit().
Based on Table 1.2 of Yee (2015), Table 1.1 is a summary and lists the new names
next to the old ones.

3



4 1 Complements: Introduction

Table 1.1 Some new VGAM link functions currently available. Any old names are in brack-

ets. They are grouped approximately according to their domains. As with the entire book, all
logarithms are natural: to base e.

Function Link gj(θj) Domain of θj Link name

cauchitlink() [cauchit()] tan(π(θ − 1
2

)) (0, 1) cauchit

clogloglink() [cloglog()] log{− log(1− θ)} (0, 1) complementary log-log

foldsqrtlink() [foldsqrt()]
√

2θ −
√

2(1− θ) (0, 1) folded square root

logitlink() [logit()] log
θ

1− θ
(0, 1) logit

multilogitlink() [multilogit()] log
θj

θM+1
(0, 1)M multi-logit;

M+1∑
j=1

θj = 1

probitlink() [probit()] Φ−1(θ) (0, 1) probit (for “probability unit”)

fisherzlink() [fisherz()] 1
2

log
1 + θ

1− θ
(−1, 1) Fisher’s Z

rhobitlink() [rhobit()] log
1 + θ

1− θ
(−1, 1) rhobit

loglink() [loge()] log θ (0,∞) log (logarithmic)

logneglink() [logneg()] log(−θ) (−∞, 0) log-negative

negloglink() [negloge()] − log(θ) (0,∞) negative-log

reciprocallink() [reciprocal()] θ−1 (0,∞) reciprocal

nbcanlink() log (θ/(θ + k)) (0,∞) NB canonical link (Sec. 11.3.3)

extlogitlink() [extlogit()] log
θ −A
B − θ

(A,B) extended logit

explink() eθ (−∞,∞) exponential

identitylink() θ (−∞,∞) identity

negidentitylink() [negidentity()] −θ (−∞,∞) negative-identity

logclink() [logc()] log(1− θ) (−∞, 1) log-complement

logloglink() [loglog()] log log(θ) (1,∞) log-log

loglogloglink() log log log(θ) (e,∞) log-log-log

logofflink(θ, offset = A) [logoff()] log(θ +A) (−A,∞) log with offset



Chapter 2

Complements: LMs, GLMs and GAMs

2.1 More on the Hauck-Donner Effect

Recall from Section 2.3.6.2 that the Hauck-Donner effect (HDE), put simply, is
due to Wald statistics being nonmonotonic near the parameter space boundary. It
was discovered by Hauck and Donner (1977).

Some recent developments include the writing of the function hdeff()

which enables its detection, for almost all VGAM family functions. The call
summary(vglmObject) conducts HDE detection by default (it can be suppressed
by HDEtest = FALSE), and another function is hdeffsev() for measuring HDE
severity.

The main paper has now appeared as Yee (2022) and because this took a long
time, some subsequent results are in Yee (2021).

2.2 More on the Wald Test

Consider wald.stat() for testing H0k : θk = θk0 by the Wald statistic, for vari-
ables k = 1, 2, . . .. One has to be careful reading the literature because several
combinations are possible: using the EIM versus the OIM, as well as evaluating
these at the original MLE versus at the hypothesized values versus at values ob-
tained by further IRLS iterations. To give some control of this choice in VGAM,
the arguments iterate.SE and orig.SE operate (Table 2.1). Suppose the current
coefficient being tested is the kth one.

� Argument orig.SE: if TRUE then the SE is evaluated at the MLE θ̂, i.e., the
regression coefficients of the original fit are used. If FALSE then θk0 is used and
the other coefficients are determined by iterate.SE. Note that if orig.SE =

TRUE then both iterate.SE = TRUE and iterate.SE = FALSE will result in the
same θ̂ being used to compute the SE because of the obvious fact that further
iterations from the original θ̂k will lead to no change in the other parameter

estimates:
̂̂
θ[−k] = θ̂[−k]. In the literature

̂̂
θ[−k] is called the restricted MLE of

θ[−k] because H0k imposes a restriction or constraint on the kth value of θ.

� Thus argument iterate.SE results in
̂̂
θ[−k] being computed by further IRLS

iteration for the SE. If FALSE then those from the original object, θ̂[−k], are

5



6 2 Complements: LMs, GLMs and GAMs

used. Altogether, wald.stat() can return three different variants of the Wald
statistic.

� The numerator of the signed Wald statistic is θ̂k − θk0, and by default θk0 = 0
for all k.

� Almost all VGAM family functions use the EIM rather than the OIM. For some
models they coincide.

The default is iterate.SE = TRUE and orig.SE = FALSE so that (θk0,
̂̂
θ[−k]) is

used for evaluating IE . Setting orig.SE = TRUE corresponds to the same situation
as summary(vglmObject)—where the HDE can be manifest.

Laskar and King (1997) investigate the behaviour of the null Wald (NW) statis-
tic on MA(1) regression model. The NW statistic is where the variance is evaluated
at the null hypothesis rather than the MLE. The results showed that the HDE was
not present for the NW statistic—this is of no surprise at all. For one parameter
models the NW statistic can be obtained by setting orig.SE = FALSE. Laskar
and King (1997) attribute the NW idea to Mantel (1987); see also Goh and King
(1999).

2.3 More on the Rao Score Test

Like lrt.stat(), function score.stat() for conducting the Rao score (RS) test
(Rao, 1948) actually calls wald.stat() because of its many shared computational
details. Basically, the underlying principles behind Table 2.1 hold for computing

the SE for the score test. For score.stat(), the default is to use U(θk0,
̂̂
θ[−k])

and IE(θk0,
̂̂
θ[−k]). For computing U , it is always a function of θk0—the question

is what are the other arguments? The logical argument iterate.score enables
this choice and operates in a similar manner to iterate.SE.

Some notes:

� The three arguments attempt to allow maximum flexibility, e.g., the combi-

nation U(θk0, θ̂[−k]) with I−1E (θk0,
̂̂
θ[−k]) is obtained by orig.SE = FALSE,

iterate.score = FALSE, iterate.SE = TRUE. Altogether, six different vari-
ants of the RS statistic can be returned by score.stat(). Setting orig.SE =

TRUE will use IE(θ̂) for the SEs.

� Of course, U(θ̂) = 0 but note that U(θk0,
̂̂
θ[−k]) is of the form (a,0) for

some a ∈ R. In score.stat() the option U(θk0, θ̂[−k]) has the form (a, b) for
some a 6= 0 and b 6= 0 in general.

� Some useful (including historical) background to the RS test is given by Bera
and Bilias (2001). The three tests are called LR, W and RS, and are imple-
mented in VGAM by lrt.stat(), wald.stat() and score.stat() respectively.
In econometrics especially, the RS test is known as the Lagrange multiplier (LM)
test. A recent article on the score test failing is Karavarsamis et al. (2020).

� Some combinations can lead to the score test becoming inconsistent (Freedman,
2007), e.g., using his notation, he gives three flavours of the information matrix:
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Table 2.1 How wald.stat() computes the SE of the kth regression coefficient. The arguments

iterate.SE and orig.SE are logical. Note: the coefficients are written in the order (k, others)

where θ̂k ∈ θ̂ which is the MLE of the original fit, and
̂̂
θ[−k] are the other estimated coefficients

obtained upon further IRLS iteration. The ‡ denotes the default. Note: in score.stat() this
table also applies to SEs, along with U(θk0, others) being specified by iterate.score.

iterate.SE !iterate.SE

orig.SE
(
θ̂k, θ̂[−k]

)
= θ̂

(
θ̂k, θ̂[−k]

)
= θ̂

!orig.SE

(
θk0,

̂̂
θ[−k]

)
(‡)
(
θk0, θ̂[−k]

)

Sn = U(θ̂k0)T I−1E (θ̂k0) U(θ̂k0), (2.1)

Tn = U(θ̂k0)T I−1O (θ̂k0) U(θ̂k0), (2.2)

Un = U(θ̂k0)T I−1O (θ̂) U(θ̂k0), (2.3)

where θ̂k0 ≡ (θk0,
̂̂
θ[−k]), hence the quantities are evaluated at the restricted

MLE. He describes (2.1) as being based on the “estimated expected” informa-
tion at the restricted MLE satisfying the null hypothesis—this is the conven-
tional textbook version, governed by conventional asymptotic theory. It is the
score.stat() default. Version (2.2) is often used when the EIM cannot be ob-
tained in closed form, which is the usual case. Version (2.3) at the unrestricted
MLE is not widely used for the score test. The statistic (2.2) may be inconsis-
tent because the OIM at the restricted maximum may not be positive definite.
By ‘consistent’, it should reject with high probability when the alternative hy-
pothesis is true. Fortunately, VGAM almost always uses the EIM so that (2.2)
is hardly ever a problem. Statistics (2.1) and (2.3) are okay because their infor-
mation matrices are typically positive-definite. However, inconsistency may also
occur due to spurious roots—by ‘inconsistent’ it is meant that the score test
power at the true value of θ does not approach 1 as n grows—and this problem
can occur even when using the EIM. He writes that ‘the score test statistic does
not tend to infinity as it should’ and ‘lack of power at remote alternatives—
especially when the expected likelihood equation has spurious roots’, and these
comments elude to the second result of the tipping point theorem (Yee, 2020).

� All the above work on the Rao score test is imperfect. In fact, there are 12 possi-
bilities: 2 for U and 3×2 for the SE. This suggests that in the future there should
be arguments equivalent to iterate.score (logical), iterate.SE.k ("null",
"old", "new"), Iterate.SE.others (logical), that implements the full range of
choices.
Note that when the code is written, this might mean the default will change.
If the model is intercept-only then the following should give a warning:
iterate.score == TRUE, iterate.SE.k == "new", or Iterate.SE.others

== TRUE, because
̂̂
θ[−k] doesn’t exist.
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2.4 Relative Risk Regression

A GLM with a binomial family and log-link is called by some as ‘relative risk
regression’. A recent paper on this model is Schwendinger et al. (2021), which
describes allied interesting topics such as the failure of half-stepping of glm() to
converge, finiteness and uniqueness of the MLE, and detection of infinite compo-
nents of the MLE.

Bibliographic Notes

Dobson and Barnett (2018) is an elementary treatment on GLMs and some allied
subjects. Fox (2016) is an applied book on using R to fit GLMs. Ly et al. (2017)
is a tutorial article on Fisher information, written by and of particular interest to
mathematical psychologists. Yee (2020) gives details on the HDE in terms of its
detection in regression models based on IRLS, tipping points and characterization
of the parameter space based on the first two derivatives of the Wald statistic.
Eilers and Marx (2021) looks at some practicalities of smoothing, especially with
P-splines. Wang and Yan (2021) describes the splines2 package for shape-restricted
regression splines.



Chapter 3

Complements: VGLMs

3.1 Iteratively Reweighted Least Squares

Giving a few more details behind (3.9) and the rest of Section 3.2 as a whole,
recall that we have ` =

∑n
i=1 wi `i, (ui)j = ∂`i/∂ηj , Xi = xTi ⊗ IM , and XVLM =

XLM ⊗ IM . For simplicity, let’s assume wi = 1 for i = 1, . . . , n. Then

∂`i
∂βj

=
∂`i
∂ηj

∂ηj
∂βj

=
∂`i
∂ηj

xi,

∂`

∂β
= XT

VLM u,

I(a−1) =

n∑
i=1

XT
i W

(a−1)
i Xi = XT

VLMW(a−1)XVLM,

hence (3.9) is

β(a) = β(a−1) + I
(
β(a−1)

)−1
u
(
β(a−1)

)
=

(
XT

VLMW(a−1) XVLM

)−1
·[

XT
VLMW(a−1) XVLM β

(a−1) + XT
VLMW(a−1) W−1(a−1) u(a−1)

]
=

(
XT

VLMW(a−1) XVLM

)−1
XT

VLMW(a−1)
[
XVLM β

(a−1) + W−1(a−1) u(a−1)
]

=
(
XT

VLMW(a−1) XVLM

)−1
XT

VLMW(a−1) z(a−1), (3.1)

where z =
(
zT1 , . . . ,z

T
n

)T
with zi = ηi + W−1

i ui. One recognizes that (3.1)

is the GLS solution obtained by regressing z(a−1) upon XVLM with weight ma-
trix W(a−1). This explains why Fisher scoring amounts to applying an IRLS al-
gorithm.

Incidentally, Fisher scoring (as opposed to Newton-Raphson) is due to Fisher
(1925).

9
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Table 3.1 New functions in VGAM 1.0-5 concerning standard likelihood inference and the

Hauck–Donner effect. The null and alternative hypotheses are H0 : β∗
(j)k

= β∗
(j)k,0

versus H1 :

β∗
(j)k

6= β∗
(j)k,0

. Notes: (i) models evaluated at β∗
(j)k

= β∗
(j)k,0

have the other elements of the

parameter vector β∗ estimated by IRLS, subject to H0. (ii) By default the .stat()-type functions

return the signed square root of the test statistics (so are asymptotically standard normal).

(iii) The score vector is denoted by U . (iv) The enumeration of the β∗
(j)k

have been mapped

to θ1, θ2, . . . for simplicity.

Function Description

lrt.stat() LRT statistics, W̃L = sgn(θ̂s − θs0) ·
√

2
[
`(θ̂)− `(θs0)

]
.

score.stat() Rao’s score test statistics,

W̃U = sgn(θ̂s − θs0) ·
√
U(θs0)T I−1

E (θs0) U(θs0),

where U =
∑n
i=1

∑M
j=1(∂`i/∂ηj) (∂ηj/∂θs).

wald.stat() Wald test statistics,

W̃s =
√
Ws = sgn(θ̂s − θs0) ·

√
(θ̂s − θs0)2 / SE2(θs0).

Table 3.2 Other new functions in VGAM (version 1.1-2 and later).

Function Description

add1.vglm() Adds all possible single terms to a VGLM.

anova.vglm() Analysis of deviance for VGLMs (Types I, II and III).

drop1.vglm() Drops all possible single terms from a VGLM.

hdeff() Detects the HDE in VGLMs.

nbcanlink() Canonical link for negative binomial regression.

ordsup() Ordinal superiority measures for categorical data models.

R2latvar() R2 for latent variable models.

step4() Choose a model by AIC in a stepwise algorithm (S4 generic function).

3.2 Confidence Intervals for Regression Coefficients

The stats generic function confint() allows the computation of confidence inter-
vals (CIs) for regression coefficients and has three methods functions that are of
relevance here.

� Function confint.default() assumes normality of the estimators about their
true values, and requires the coef() and vcov() methods functions to work on
the fitted object. The basic arguments are

> args(confint)

function (object, parm, level = 0.95, ...)

NULL

The CIs are based on the Wald method: an approximate 100(1−α)% confidence
interval for θj is given by

θ̂j ± z(α/2) SE(θ̂j), (3.2)

which is (A.23). These are symmetric about the point estimate, and are quick
and easy to compute on a calculator (at least for common α values such as 5%,
that is).
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� The methods function confint.lm() returns CIs for each βk of an LM
(see (2.1)). Using the result

β̂ ∼ Np

(
β, σ2

(
XTX

)−1)
(3.3)

(same as (2.8)) where σ is required to be estimated, the CI formula is based on
a tn−p-distribution. In fact it is simply (3.2) with z(α/2) replaced by tn−p(α/2).
The degrees of freedom, n− p, is returned by df.residual().

� The methods function confint.glm() in MASS (written by D. M. Bates and
W. N. Venables and subsequently corrected by B. D. Ripley) is based on the LRT
described in Section A.1.4.1. Some of the details are as follows. Partition θ =
(θT1 ,θ

T
2 )T where pj = dim(θj), and treat θ2 as a nuisance parameter. Let the

profile likelihood for θ1 be

R(θ1) = max
θ2

L(θ1,θ2)/L(θ̂). (3.4)

Then the LR subset statistic −2 logR(θ∗1) ∼ χ2
p1 asymptotically, therefore an

approximate 100(1−α)% confidence region for θ1 is the set of all θ1∗ such that

− 2 logR(θ1∗) < χ2
p1(α). (3.5)

The function confint.glm() essentially determines (3.5) with p1 = 1 for each
regression coefficient. Computationally, it uses offsets and the original model’s
starting values to calculate values of the profile likelihood along a grid cast
around the MLE of each βk. The approx() function can then be used to find
the confidence limits corresponding to the specified α level.

Note that confint(), by default, returns CIs for each regression coefficient in the
model, therefore issues relating to multiple comparisons must be borne in mind.

Now for "vglm" objects, a methods function is available to return CIs for
each β∗(j)k of a VGLM. It is

> args(confintvglm)

function (object, parm = "(All)", level = 0.95, method = c("wald",

"profile"), trace = NULL, ...)

NULL

The default value of argument parm signifies that CIs for all regression coefficients
are to be computed. The first value of argument method is its default (warn-
ing: the order of the values might change in the future). For "wald" the method
of confint.default() is used. For "profile" the profile likelihood method of
confint.glm() is used (indeed, the VGAM code is heavily based on the MASS
code).

It is well known that CIs based on LRT tend to be more accurate than Wald
CIs, especially when n is small. The profile likelihood method is computationally
expensive and it is sometimes useful to set trace = TRUE in order to monitor the
progress of the computations.

In its current implementation, models with an estimated dispersion parameter,
such as quasibinomialff() and quasipoissonff(), are not handled—only full
likelihood models are. When solving for (3.4) it is possible that an attempt to cross
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over the boundary of the parameter space is made by θ2, hence some warnings
may be issued.

The functions plot.profile.glm() and pairs.profile.glm() from MASS
appear to work with "vglm" objects. Here is an example based on the GPD for
simulated extremes data (Sect. 16.3), where it is well known that the shape pa-
rameter requires a lot of data in order to be estimated with any certainty.

> set.seed(1); Threshold <- 0; shape <- exp(-1) - 0.5

> gdata <- data.frame(x2 = runif(nn <- 1000))

> gdata <- transform(gdata, y2 = rgpd(nn, scale = exp(1 + 0.1 * x2),

shape = shape))

> fit1 <- vglm(y2 ~ x2, gpd(Threshold), data = gdata)

> coef(fit1)

(Intercept):1 (Intercept):2 x2

0.96947 -1.01303 0.26087

> coef(fit1, matrix = TRUE)

loglink(scale) logofflink(shape, offset = 0.5)

(Intercept) 0.96947 -1.013

x2 0.26087 0.000

> confint(fit1, method = "wald")

2.5 % 97.5 %

(Intercept):1 0.846926 1.09201

(Intercept):2 -1.160338 -0.86571

x2 0.077614 0.44413

> confint(fit1, method = "profile")

2.5 % 97.5 %

(Intercept):1 0.844439 1.09032

(Intercept):2 -1.169865 -0.85487

x2 0.078201 0.44322

With such a large n it is not surprising that both methods yield similar CIs. Then

> pfit1 <- profile(fit1)

> class(pfit1)

[1] "profile.glm" "profile"

> MASS:::plot.profile(pfit1) # Simply plot(pfit1) might work

and

> MASS:::pairs.profile(pfit1) # Simply pairs(pfit1) might work

give Figs. 3.1–3.2.
From the online help of MASS:::plot.profile: “the pairs() method shows,

for each pair of parameters x and y, two curves intersecting at the MLE, which give
the loci of the points at which the tangents to the contours of the bivariate profile
likelihood become vertical and horizontal, respectively. In the case of an exactly
bivariate normal profile likelihood, these two curves would be straight lines giving
the conditional means of y|x and x|y, and the contours would be exactly elliptical.”

Profile likelihoods are described briefly and at an introductory level in Coles
(2001, Sects. 2.6.5,2.6.6) and another numerical example of confint() can be
found in Section 16.1.
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Fig. 3.1 Profile plots of a GPD model fitted to some simulated data.

3.3 Standard Errors for Regression Coefficients

When a simple VGLM is plotted using the "vgam" plot() methods function with
se = TRUE the ±2 SEs are 0 at the mean of that variable (for a simple term of
the form β∗(j)k xk, that is). An example of this is Figure 8.2(a). In particular, the
plotted line is

β̂∗(j)k (xik − xk) (3.6)

so that it is centred at that variable’s mean. Hence the fitted line goes
through (xk, 0). Also, the SEs used are

SE(β̂∗(j)k) · |xik − xk| (3.7)

which predict(vglmObject, type = "terms", se = TRUE) returns. It is based

on V̂ar(xTi β̂
∗
) = xTi V̂ar(β̂

∗
) xi where the matrix in the middle is (3.21).

Setting rug = TRUE plots the location of the xik on the horizontal axis and this
can be useful to see what the (jittered) distribution of the values looks like.

3.4 Variable Selection for VGLMs

This section, which concerns add1.vglm(), drop1.vglm() and step4vglm(),
is closely related to Section 3.5. The latter function is a direct adaptation of
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Fig. 3.2 Pairs plots of a GPD model fitted to some simulated data.

stats:::step() for "vglm" objects. Since step() is not generic, the name
step4() was adopted and it is generic, as well as being S4 rather than S3.

It is the intent that step4vglm() should work as similar as possible to step(),
which chooses a model by AIC in a stepwise algorithm. Internally it repeatedly
calls add1.vglm() and drop1.vglm(). These functions add or drop one term from
a "vglm" fit—and p-values are possible by specifying test = "LRT" as opposed
to "none".

Here are the arguments:

> args(add1.vglm)

function (object, scope, test = c("none", "LRT"), k = 2, ...)

NULL

> args(drop1.vglm)

function (object, scope, test = c("none", "LRT"), k = 2, ...)

NULL
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> args(step4vglm)

function (object, scope, direction = c("both", "backward", "forward"),

trace = 1, keep = NULL, steps = 1000, k = 2, ...)

NULL

As usual, where there are choices, the first value is the default choice. The first
two functions were directly adapted from add1.glm() and drop1.glm().

Here is an example. We fit a NB-1 to the azpro data set where some extra
variables have been added.

> data(azpro, package = "COUNT")

> set.seed(1)

> azpro <- transform(azpro,

x10 = factor(round(runif(nrow(azpro), -0.5, 3.5))),

x11 = runif(nrow(azpro)))

> vglm.D93 <-

vglm(los ~ procedure + sex + age75 + admit + x10 + x11,

family = negbinomial(parallel = TRUE, zero = ""), # NB1

data = azpro)

>

> add1(vglm.D93,

scope = ~ procedure * sex + age75 + admit + x10 * x11,

test = "LRT")

Single term additions

Model:

los ~ procedure + sex + age75 + admit + x10 + x11

Df logLik AIC LRT Pr(>Chi)

<none> -9959 19938

procedure:sex 1 -9958 19938 1.43 0.23

x10:x11 3 -9957 19940 3.39 0.34

None of the interactions are needed really. Now let’s try some stepwise regression.

> ans <- step4(vglm.D93,

scope = ~ procedure + sex + age75 + admit + x10 + x11 +

hospital)

Start: AIC=19938

los ~ procedure + sex + age75 + admit + x10 + x11

Df logLik AIC

- x10 3 -9960 19934

- x11 1 -9959 19936

<none> -9959 19938

+ hospital 1 -9959 19940

- age75 1 -9977 19973

- sex 1 -9979 19976

- admit 1 -10100 20218

- procedure 1 -11056 22130

Step: AIC=19934

los ~ procedure + sex + age75 + admit + x11

Df logLik AIC

- x11 1 -9960 19933

<none> -9960 19934



16 3 Complements: VGLMs

+ hospital 1 -9960 19936

+ x10 3 -9959 19938

- age75 1 -9979 19969

- sex 1 -9980 19973

- admit 1 -10101 20214

- procedure 1 -11057 22126

Step: AIC=19933

los ~ procedure + sex + age75 + admit

Df logLik AIC

<none> -9960 19933

+ x11 1 -9960 19934

+ hospital 1 -9960 19935

+ x10 3 -9959 19936

- age75 1 -9979 19968

- sex 1 -9981 19971

- admit 1 -10101 20212

- procedure 1 -11057 22124

> ans

Call:

vglm(formula = los ~ procedure + sex + age75 + admit, family = negbinomial(parallel = TRUE,

zero = ""), data = azpro)

Coefficients:

(Intercept):1 (Intercept):2 procedure sex age75

1.47683 1.14215 0.94695 -0.11474 0.11609

admit

0.30326

Degrees of Freedom: 7178 Total; 7172 Residual

Log-likelihood: -9960.4

> ans@post$anova # Results placed here

Step Df Deviance Resid. Df Resid. Dev AIC

1 NA NA 7168 19918 19938

2 - x10 3 2.51845 7171 19920 19934

3 - x11 1 0.44374 7172 19921 19933

Note that the final model is placed in the post slot, with component name anova.
The final model here happens to drop the two junk variables that were created—
this is a good thing.

3.4.1 The update() Function

Incidentally, the generic function update() works for "vglm" objects. For example,

> update(vglm.D93, . ~ . - x10 - x11)

Call:

vglm(formula = los ~ procedure + sex + age75 + admit, family = negbinomial(parallel = TRUE,
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zero = ""), data = azpro)

Coefficients:

(Intercept):1 (Intercept):2 procedure sex age75

1.47683 1.14215 0.94695 -0.11474 0.11609

admit

0.30326

Degrees of Freedom: 7178 Total; 7172 Residual

Log-likelihood: -9960.4

Fortunately, update.default() and update.formula() were written so generally
that no new code in VGAM is needed to get this going!

3.5 Analysis of Deviance for VGLMs

The methods function anova.vglm() produces analysis of deviance tables
for VGLM fits. The function borrows ideas from anova.glm() in stats and
Anova.glm() in car. The former implements Type I hypothesis tests only, and
the latter implements Type II and III tests only (but not exactly as the SAS def-
inition). By analysis of deviance, it is meant loosely that if the deviance of the
model is not defined or implemented, then twice the difference between the log-
likelihoods of two nested models is asymptotically chi-squared distributed with
degrees of freedom equal to the difference in the number of parameters of the
two models. This is because most VGAM family functions do not have a deviance
that is defined or implemented, so we use 2(` − `0) to loosely be called the de-
viance between the two models. This is “2 * LogLik Diff.” in the output. See
Section A.1.4.2 for the overall relevant background material.

The anova() methods function for "vglm" objects has a type argument which
allows Type I, II, and III tests to be conducted for the terms in the formula of the
models.

> args(anova.vglm)

function (object, ..., type = c("II", "I", "III", 2, 1, 3), test = c("LRT",

"none"), trydev = TRUE, silent = TRUE)

NULL

It is seen that Type II tests are the (current) default, and LRTs are performed as
opposed to no test at all. Some justification for type = "II" being the default is
given below.

Although they are more difficult test to understand than the other two, Type II
tests do not suffer from the marginality problem of Type III, and according to the
online help of car:::Anova.glm() Type I tests rarely test interesting hypotheses
in unbalanced designs. However, Type II are inappropriate when there are signifi-
cant interactions. It can be shown that when there is no interaction, Type II tests
have more statistical power than Type III, however, when there is an interaction,
they are inappropriate (Lewsey et al., 2001; Langsrud, 2003). In terms of statis-
tical software, Type III is the default for, e.g., Minitab, SAS, SPSS and Stata;
and Type I is the default for Genstat and stats:::anova() in R. Type II is the
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default for car:::Anova() and anova.vglm(). A simple reference on the above
issues is Fox and Weisberg (2011).

For anova(fit, type = 1), specifying a single object gives a sequential anal-
ysis of deviance table for that fit. Of course, the usual regularity conditions are
assumed to hold. For the analysis of deviance table, the reductions in the residual
deviance as each term of the formula is added in turn are given in as the rows of
a table, plus the residual deviances themselves.

Also for type = 1, if more than one object is specified then the table has a
row for the residual degrees of freedom and deviance for each model. For all but
the first model, the change in degrees of freedom and deviance is also given. (This
only makes statistical sense if the models are nested.) It is conventional to list the
models from smallest to largest, but this is up to the user.

Setting the argument test = "none" means that no p-values are returned
whereas test = "LRT" conducts a likelihood ratio test. It is hoped that soon in
the future test = "Rao" will conduct Rao’s score test—see score.stat(). The
function lrtest() provides an alternative method to compare nested models.

3.5.1 Types I, II, and III

This section gives a few details about the different types of tests implemented. It
was SAS software that popularized the notion of Type I, II, and III sum of squares
(SS) for hypothesis testing, especially in the context of LMs and ANOVA. We use
the same notions here for VGLMs. Whereas the notes here correspond to E(Y )
in a LM and η in a GLM, it corresponds to (η1, . . . , ηM ) in VGLMs because a
variable xk can be potentially found in every ηj .

Note that Type II and III for anova.vglm() are the same as car:::Anova.glm(),
and the latter has definitions that do not precisely match the SAS definitions. A
full treatment would involve discussion of missing values and estimable functions—
something not given here.

Also note that the topic of Type I, II, and III SS is controversial amongst
statisticians and there is no general consensus about which is the best in gen-
eral (Hector et al., 2010; Madsen and Thyregod, 2011). Their differences can be
illustrated in terms of two factors called A and B, say, so that their interac-
tion A ∗ B = 1 + A + B + A : B is the sum of the intercept, two main effects
and the interaction term. It always to pays to test for the interaction terms before
the main effects because main effects are rarely interpretable in the presence of
interactions. If there was another factor C, say, then A∗B∗C = 1+A+B+C+A :
B + A : C + B : C + A : B : C. The data is called balanced of there are an equal
number of observations in each cell of the contingency table, e.g., at each level
of A, A : B, etc. In ANOVA, if the data is unbalanced, then there are several
ways to calculate sums of squares, hence the common three types. It transpires
that Type I, II, and III all coincide with balanced data because the factors are
orthogonal.
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3.5.1.1 Type I Tests

These are called sequential SS and incremental SS. For this, the order of the
terms is important, and the each term is added sequentially from first to last.
Computationally, Type I SSs are the most easily computed (Table 3.3).

According to Nelder (1994) and others, Type I and II sums are the only appro-
priate ones for testing ANOVA effects; however, see also the discussion of Nelder’s
article, including Searle (1995) and Rodriguez et al. (1995).

Table 3.3 Type I tests in a LM with A ∗ B. It is sequential from first to last. Notationally,
SS(µ,A,B) is the sum of squares of the model comprising 1, A and B, while SS(A|µ,B) is the

additional sum of squares due to adding A to the model comprising 1 and B, etc.

Source Type I SS

µ SS(µ) also known as the NULL model
A SS(A|µ) = SS(µ, A)− SS(µ)
B SS(B|µ, A) = SS(µ, A, B)− SS(µ, A)
A : B SS(A : B|µ, A, B) = SS(µ, A, B, A : B)− SS(µ, A, B)

3.5.1.2 Type III Tests

These are described next as they are easy to understand. Type III SS are called
the partial SS approach. Here, every effect is adjusted for all other effects, so that
a particular term is entered last in a Type I analysis. If the model has interaction
terms then this means that care must be taken, e.g., for A ∗B, we have a p-value
for A, given a model with 1, B and A : B. Usually it does not make sense to test
for a main effect given an interaction term, hence Type III tests should be used
with care. Type III tests violate marginality—see Section 3.5.1.3. In fact, the help
file of car:::Anova.glm gives a warning to be careful of type-III tests. Table 3.4
gives a breakdown of the Type III SS for the two-factor case.

Table 3.4 Type III tests in a LM with A ∗B. Each term is entered last.

Source Type I SS

A SS(A|µ, B, A : B) = SS(µ, A, B, A : B)− SS(µ, B, A : B)
B SS(B|µ, A, A : B) = SS(µ, A, B, A : B)− SS(µ, A, A : B)
A : B SS(A : B|µ, A, B) = SS(µ, A, B, A : B)− SS(µ, A, B)

3.5.1.3 Type II Tests

These have been described as hierarchical or partially sequential tests. As the
car:::Anova.glm help file says, Type II tests are calculated according to the prin-
ciple of marginality: higher-order terms are not included when adding a particular
term.
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According to SAS, Type II SS are the reduction in error SS due to adding
the term after all other terms have been added to the model except terms that
contain the effect being tested. An effect is contained in another effect if it can
be derived by deleting variables from the latter effect, e.g., the main effect of A
is not adjusted for terms such as A : B, A : C or A : B : C. For example, A and
B are both contained in A : B, hence for the model A ∗ B, the Type II SS are
given by the reduced SS given in Table 3.5. Thus the p-value for A is based on a
regression on 1 and B because A : B contains A. As another example, for three
factors, A : B is contained in A : B : C, therefore adding A : B gives the Type II
SS(A : B|µ, A, B, C, A : C, B : C) = SS(µ, A, B, C, A : B, A : C, B :
C)− SS(µ, A, B, C, A : C, B : C).

It can be shown that when there is no interaction, Type II tests have more sta-
tistical power than Type III tests. However, when there is an interaction, Type II
are inappropriate.

Table 3.5 Type II tests in a LM with A ∗B. Higher-order terms are not included when adding

a particular term to the model.

Source Type II SS

A SS(A|µ, B) = SS(µ, A, B)− SS(µ, B)
B SS(B|µ, A) = SS(µ, A, B)− SS(µ, A)
A : B SS(A : B|µ, A, B) = SS(µ, A, B, A : B)− SS(µ, A, B)

3.5.2 On anova() and Anova()

Here are some thoughts on stats:::anova() and car:::Anova(), both from a
developer’s and user’s point of view.

The generic function Anova() in car has several methods functions for various
types of models, such as those produced by lm() (univariate and multivariate
responses), glm(), polr() in MASS, multinom() in nnet. The functions computes
Type II or Type III analysis-of-deviance tables, and they offer new capabilities
above the standard R function anova(). In particular, anova() fits Type I only,
whereas Anova() fits Type II and III only, with Type II being its default.

While the methods functions for Anova() increases its applicability, there are
dangers that casual users need to be aware of, for example, Anova.polr() only
handles the default logit link for cumulative link models fitted by MASS:::polr(),
and feeding in a cumulative probit model results in nonsense output and does not
even issue a warning message (In fact, this limitation is not even mentioned in the
online help file!).

Each methods function of anova() handles a series of fits, via the ... argument.
However, Anova() only handles a single model. Thus

> Anova(fit.logit2, fit.logit)

ignores the second model. This is justified because Type I tests are not imple-
mented by Anova().
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Currently anova.vglm() implements Types I, II, III, so can be thought of as
a combination of stats:::anova() and car:::Anova(). Indeed, anova.vglm()
tries to offer a selection of the good points from both functions. Currently type

= "II" is the default, but that might possibly change in the future. So it is safest
to specify it explicitly. And although LRT p-values are computed, one day it is
hoped that Rao’s score tests be conducted too. And anova.vglm() can handle a
series of fits, e.g.,

> anova(fit.logit2, fit.logit, type = 1)

It is necessary to specify type = "I" here.

3.5.3 Examples

3.5.3.1 Proportional Odds Model

Here is an example of fitting a full-interaction proportional odds model involving
three factors.

> data("backPain", package = "VGAM")

> backPain$x1 <- factor(backPain$x1) # It’s really a factor variable

> backPain$x2 <- factor(backPain$x2) # Ditto

> backPain$x3 <- factor(backPain$x3) # Ditto

> summary(backPain) # To check

x1 x2 x3 pain

1:39 1:21 1:64 worse : 5

2:62 2:52 2:37 same :14

3:28 slight.improvement :18

moderate.improvement:20

marked.improvement :28

complete.relief :16

> fitlogit <- vglm(pain ~ x1 * x2 * x3, propodds, data = backPain)

> coef(fitlogit)

(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4 (Intercept):5

5.627426 4.033720 3.024353 2.008484 0.172164

x12 x22 x23 x32 x12:x22

-1.849842 -1.475770 0.054328 -1.466637 0.953756

x12:x23 x12:x32 x22:x32 x23:x32 x12:x22:x32

-1.465196 1.492585 0.538289 -0.468558 -1.866090

x12:x23:x32

-0.025652

> anova(fitlogit)

Analysis of Deviance Table (Type II tests)

Model: ’cumulative’, ’VGAMordinal’, ’VGAMcategorical’

Links: ’logitlink’

Response: pain

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
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x1 1 13.22 495 329 0.00028 ***

x2 2 5.20 497 321 0.07430 .

x3 1 7.55 495 321 0.00599 **

x1:x2 2 3.56 493 316 0.16892

x1:x3 1 0.62 492 313 0.43060

x2:x3 2 0.36 493 313 0.83720

x1:x2:x3 2 1.29 491 312 0.52434

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> anova(fitlogit, type = "I")

Analysis of Deviance Table (Type I tests: terms added sequentially from

first to last)

Model: ’cumulative’, ’VGAMordinal’, ’VGAMcategorical’

Links: ’logitlink’

Response: pain

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 500 343

x1 1 15.94 499 327 6.5e-05 ***

x2 2 4.54 497 323 0.103

x3 1 6.18 496 316 0.013 *

x1:x2 2 3.16 494 313 0.206

x1:x3 1 0.45 493 313 0.504

x2:x3 2 0.36 491 312 0.837

x1:x2:x3 2 1.29 489 311 0.524

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> anova(fitlogit, type = "III")

Analysis of Deviance Table (Type III tests: each term added last)

Model: ’cumulative’, ’VGAMordinal’, ’VGAMcategorical’

Links: ’logitlink’

Response: pain

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

x1 1 2.60 490 314 0.11

x2 2 3.74 491 315 0.15

x3 1 1.75 490 313 0.19

x1:x2 2 3.96 491 315 0.14

x1:x3 1 0.81 490 312 0.37

x2:x3 2 0.42 491 312 0.81

x1:x2:x3 2 1.29 491 312 0.52

Näıvely, one can see that the p-values for the main effects can be quite different.
Starting with the highest-order interactions, one concludes that x1:x2:x3 is not
needed, nor any of the pairwise interactions. Then let’s fit main effects only:

> fitlogit2 <- vglm(pain ~ x1 + x2 + x3, propodds, data = backPain)

> coef(fitlogit2)

(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4 (Intercept):5
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5.410242 3.836542 2.838690 1.859782 0.096801

x12 x22 x23 x32

-1.465704 -1.031782 -1.102121 -0.924080

> summary(fitlogit2, presid = FALSE)

Call:

vglm(formula = pain ~ x1 + x2 + x3, family = propodds, data = backPain)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 5.4102 0.7247 7.47 8.3e-14 ***

(Intercept):2 3.8365 0.5955 6.44 1.2e-10 ***

(Intercept):3 2.8387 0.5479 5.18 2.2e-07 ***

(Intercept):4 1.8598 0.5080 3.66 0.00025 ***

(Intercept):5 0.0968 0.4757 0.20 0.83877

x12 -1.4657 0.3968 -3.69 0.00022 ***

x22 -1.0318 0.4839 -2.13 0.03298 *

x23 -1.1021 0.5372 -2.05 0.04023 *

x32 -0.9241 0.3804 -2.43 0.01513 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Number of linear predictors: 5

Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3]),

logitlink(P[Y>=4]), logitlink(P[Y>=5]), logitlink(P[Y>=6])

Residual deviance: 316.4 on 496 degrees of freedom

Log-likelihood: -158.2 on 496 degrees of freedom

Number of Fisher scoring iterations: 5

No Hauck-Donner effect found in any of the estimates

Exponentiated coefficients:

x12 x22 x23 x32

0.23092 0.35637 0.33217 0.39690

> anova(fitlogit2)

Analysis of Deviance Table (Type II tests)

Model: ’cumulative’, ’VGAMordinal’, ’VGAMcategorical’

Links: ’logitlink’

Response: pain

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

x1 1 14.08 497 330 0.00018 ***

x2 2 5.13 498 322 0.07708 .

x3 1 6.18 497 323 0.01295 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> anova(fitlogit2, type = "I")
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Analysis of Deviance Table (Type I tests: terms added sequentially from

first to last)

Model: ’cumulative’, ’VGAMordinal’, ’VGAMcategorical’

Links: ’logitlink’

Response: pain

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 500 343

x1 1 15.94 499 327 6.5e-05 ***

x2 2 4.54 497 323 0.103

x3 1 6.18 496 316 0.013 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> anova(fitlogit2, type = "III")

Analysis of Deviance Table (Type III tests: each term added last)

Model: ’cumulative’, ’VGAMordinal’, ’VGAMcategorical’

Links: ’logitlink’

Response: pain

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

x1 1 14.08 497 330 0.00018 ***

x2 2 5.13 498 322 0.07708 .

x3 1 6.18 497 323 0.01295 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The results suggests that x2 could possibly be dropped.

> fitlogit3 <- vglm(pain ~ x1 + x3, propodds, data = backPain)

> coef(fitlogit3)

(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4 (Intercept):5

4.55944 3.00054 2.01011 1.05992 -0.63074

x12 x32

-1.58899 -0.87114

> summary(fitlogit3, presid = FALSE)

Call:

vglm(formula = pain ~ x1 + x3, family = propodds, data = backPain)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 4.559 0.597 7.64 2.2e-14 ***

(Intercept):2 3.001 0.442 6.78 1.2e-11 ***

(Intercept):3 2.010 0.390 5.16 2.5e-07 ***

(Intercept):4 1.060 0.352 3.02 0.0026 **

(Intercept):5 -0.631 0.347 -1.82 0.0690 .

x12 -1.589 0.396 -4.01 6.1e-05 ***

x32 -0.871 0.377 -2.31 0.0208 *

---
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Number of linear predictors: 5

Names of linear predictors: logitlink(P[Y>=2]), logitlink(P[Y>=3]),

logitlink(P[Y>=4]), logitlink(P[Y>=5]), logitlink(P[Y>=6])

Residual deviance: 321.53 on 498 degrees of freedom

Log-likelihood: -160.76 on 498 degrees of freedom

Number of Fisher scoring iterations: 5

Warning: Hauck-Donner effect detected in the following estimate(s):

’(Intercept):1’

Exponentiated coefficients:

x12 x32

0.20413 0.41848

> anova(fitlogit3)

Analysis of Deviance Table (Type II tests)

Model: ’cumulative’, ’VGAMordinal’, ’VGAMcategorical’

Links: ’logitlink’

Response: pain

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

x1 1 16.94 499 338 3.9e-05 ***

x3 1 5.59 499 327 0.018 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> anova(fitlogit3, type = "I")

Analysis of Deviance Table (Type I tests: terms added sequentially from

first to last)

Model: ’cumulative’, ’VGAMordinal’, ’VGAMcategorical’

Links: ’logitlink’

Response: pain

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 500 343

x1 1 15.94 499 327 6.5e-05 ***

x3 1 5.59 498 322 0.018 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> anova(fitlogit3, type = "III")

Analysis of Deviance Table (Type III tests: each term added last)

Model: ’cumulative’, ’VGAMordinal’, ’VGAMcategorical’
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Links: ’logitlink’

Response: pain

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

x1 1 16.94 499 338 3.9e-05 ***

x3 1 5.59 499 327 0.018 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

3.5.3.2 Bivariate Normal

Here is an example from a bivariate normal distribution where no deviance is
implemented.

> set.seed(123); nn <- 1000

> bdata <- data.frame(x2 = runif(nn), x3 = runif(nn))

> bdata <- transform(bdata, y1 = rnorm(nn, 1 + 2 * x2 + 0.1 * x3),

y2 = rnorm(nn, 3 + 4 * x2))

> fit1 <- vglm(cbind(y1, y2) ~ x2 + x3,

binormal(eq.sd = TRUE), data = bdata, trace = FALSE)

> coef(fit1, matrix = TRUE)

mean1 mean2 loglink(sd1) loglink(sd2) rhobitlink(rho)

(Intercept) 1.02837 2.965324 -0.0067316 -0.0067316 0.052149

x2 2.04200 4.097529 0.0000000 0.0000000 0.000000

x3 0.08636 -0.068109 0.0000000 0.0000000 0.000000

> anova(fit1, type = 1)

Analysis of Deviance Table (Type I tests: terms added sequentially from

first to last)

Model: ’binormal’

Links: ’identitylink’, ’identitylink’, ’loglink’, ’loglink’, ’rhobitlink’

Response: cbind(y1, y2)

Df 2 * LogLik Diff. Resid. Df LogLik Pr(>Chi)

NULL 4996 -3374

x2 2 1099 4994 -2825 <2e-16 ***

x3 2 1 4992 -2824 0.6

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> # Drop x3 manually... and call the model fit2

> fit2 <- vglm(cbind(y1, y2) ~ x2,

binormal(eq.sd = TRUE), data = bdata, trace = FALSE)

> anova(fit2, fit1, type = 1) # More than one object specified

Analysis of Deviance Table

Model 1: cbind(y1, y2) ~ x2

Model 2: cbind(y1, y2) ~ x2 + x3

Resid. Df LogLik Df 2 * LogLik Diff. Pr(>Chi)

1 4994 -2825

2 4992 -2824 2 1.02 0.6
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> lrtest(fit1, fit2) # An alternative way of testing for x3, given x2

Likelihood ratio test

Model 1: cbind(y1, y2) ~ x2 + x3

Model 2: cbind(y1, y2) ~ x2

#Df LogLik Df Chisq Pr(>Chisq)

1 4992 -2824

2 4994 -2825 2 1.02 0.6

Although the truth is that x3 has a small effect, the data suggests that that variable
can be dropped.

3.6 GLM Residuals and Diagnostics

This section might better belong to Chapter 2, however it is hoped that this work
be extended to VGLMs in the future.

3.6.1 Randomized Quantile Residuals

Dunn and Smyth (1996) propose randomized quantile residuals for continuous
and discrete distributions. They have some nice advantages over other types of
residuals:

(i) They have an exact standard normal distribution regardless of whether the
distribution is continuous or discrete. In contrast, deviance and Pearson resid-
uals may contain distracting patterns. This standard normality arises if θ are
consistently estimated and holds apart from the sampling variability in θ̂.

(ii) They are very easily implemented when a p-type function exists for that distri-
bution, i.e., the CDF. This is often the case for most distributions in VGAM.

(iii) They can be used where trends and patterns are of interest because yi < µ̂i
does not necessarily imply that riq < 0. In fact, the authors state that their
best use is under these circumstances.

For continuous distributions the quantile residuals are defined by

riq = Φ−1[F (yi; θ̂)]. (3.8)

For example, for a default exponential() object it is qnorm(pexp(y, rate = 1

/ fitted(object))).
For discrete distributions the randomized quantile residuals are

riq = Φ−1(Ui) (3.9)

where Ui ∼ Unif(ai, bi), ai = limy→y−i
F (y; θ̂), bi = F (yi; θ̂). Actually, the au-

thors write (ai, bi] but with runif() this is effectively the same as the com-
pletely open interval. As an example, for the Poisson distribution, this is of the
form qnorm(runif(length(y), ppois(y-1, mu), ppois(y, mu))). The authors
recommend four replications of the quantile residuals with discrete distributions
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because they have a random component, and any features not preserved across all
four sets of residuals are considered artifacts of the randomization.

The following is a simple illustration of their use.

> nn <- 200

> set.seed(123)

> pdata <- data.frame(x2 = rnorm(nn))

> pdata <- transform(pdata, y1 = rpois(nn, exp(1 + x2)))

> fit3 <- vglm(y1 ~ x2, poissonff, data = pdata)

> coef(fit3, matrix = TRUE)

loglink(lambda)

(Intercept) 1.02777

x2 0.98706

> rqres <- resid(fit3, type = "rquantile")

> hist(rqres, prob = TRUE, main = "(a)")

> qqnorm(rqres, main = "(b)", col = "blue")

> qqline(rqres)

This gives Fig. 3.3. Not surprisingly, the standard normal distribution expected of
the residuals is largely obtained.
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Fig. 3.3 Randomized quantile residuals for simulated Poisson data. (a) Histogram, (b) normal

QQ plot.

3.6.2 Standardized Residuals

Agresti (2013, p.141) describes standardized residuals for GLMs, which are of the
form

rstdi =
yi − µ̂i

SE(yi − µ̂i)
. (3.10)
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The standardized residuals for LMs, (2.12), are a special case.
Using results from Section 3.7.5, for GLMs,

Cov(y − µ̂) = V1/2 [In −H] V1/2, (3.11)

H = W1/2 X
(
XTW X

)−1
XTW1/2 (3.12)

(cf. (3.63) where U = W1/2), so that (3.10) becomes

rstdi =
yi − µ̂i√

V (µ̂i) (1− hii)
. (3.13)

The proof of this result depends on the delta method (Agresti, 2013, p.142). For
the Poisson model this is simply rstdi = (yi − µ̂i)/

√
µ̂i(1− hii).

The call residuals(fit, type = "stdres") returns these residuals for cer-
tain GLMs, e.g., poissonff. Here is a very simple example.

> set.seed(123)

> pdata <- data.frame(x2 = rnorm(nn <- 100))

> pdata <- transform(pdata, y1 = rpois(nn, exp(3 + x2)))

> fit1 <- vglm(y1 ~ x2, poissonff, data = pdata)

> coef(fit1, matrix = TRUE)

loglink(lambda)

(Intercept) 3.01517

x2 0.97756

> stem(resid(fit1, type = "stdres"))

The decimal point is at the |

-2 | 4

-1 | 655

-1 | 4433222110000

-0 | 9999988877766555

-0 | 4444442221111111000000

0 | 0011122223333344444

0 | 555667899

1 | 113334

1 | 5688999

2 | 003

2 | 5

The standardized residuals do appear to be approximately standard normal dis-
tributed.

Bibliographic Notes

Wiley and Wiley (2019) provides a general introduction to regression modelling
with GLMs and VGLMs, including some other topics such as GAMs, machine
learning, missing values and GLMMs.

The estimation of θ fromN(θ, θ2) has been considered by several authors at least
in the context of likelihood theory and associated topics such as the bootstrap,
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e.g., Young and Smith (2005, p.209) and Severini (2000, p.186). Section 3.3.1.4
(Yee, 2015, p.102) fits this model as a VGLM using constraint matrices.

Exercises

Ex. 3.1. Simple Constraints—Poisson Distribution

(a) Suppose that Y1 ∼ Pois(µ1) and Y2 ∼ Pois(µ2 = κ · µ1) independently, for
positive µ1 and κ. Generate 100 random variates each of Y1 and Y2, where µ1 = 2
and κ = e ≈ 2.7128, say.

(b) Estimate µ1 and κ using poissonff().
(c) Estimate µ1 and κ using glm() and poisson().
(d) Suppose now that κ is known. Estimate µ1 using all the data and poissonff().
(e) Suppose that µ2 = µ1+κ with µ1 and κ as in (a). Generate 100 random variates

each of Y1 and Y2. Then repeat (b). And then repeat (d).

Ex. 3.2. Coefficient of Variation
The coefficient of variation (CV) is the ratio the standard deviation σ to the
mean µ: σ/µ. Suppose that Y is normally distributed with some known CV. Gen-
erate n = 100 observations from N(µ, σ2) where CV= 1

4 is known, µ = 10 is
unknown, and estimate µ.

Ex. 3.3. Type III SS for Three Factors
Construct the equivalent of Table 3.5 but for three factors A, B, C, i.e., for A ∗
B ∗C. Test out your answer empirically for a few terms using some artificial data
set.
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A book soon to appear or has appeared is Wood (2017). There are other R packages
for fitting GAMs, e.g., gamlss (which concentrates on models having location, scale
and/or shape parameters; Stasinopoulos et al. (2017)) and R2BayesX (which is
based on Bayesian methods).
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Complements: Reduced-Rank VGLMs

5.1 Time Series

This section shows that the VGLM and RR-VGLM infrastructure can be used to
fit some time series models This section might be better placed in Section 10.2,
however we position it here because the nested reduced-rank autoregressive model
of Ahn and Reinsel (1988) appears in Chapter 5 of the book.

Consider the multivariate autoregressive AR(L) model

Y t =

L∑
j=1

ΦjY t−j + εt, εt ∼ (0,Ω) independently, t = 1, . . . , n, (5.1)

where Y t is M × 1, and Φj is M ×M and to be estimated. When the number of
lags L = 1 it is possible to fit some special types of models, especially when M = 2.

5.1.1 Cointegration

This section is based on Murray (1994). If a linear combination of several nonsta-
tionary time series (random variables) results in a stationary time series (random
variable) then we say the combined random variables are cointegrated. This was
proposed by Granger (1981); see also Granger (1987) for their relationship with
error correction models.

Let’s follow the simple example of Murray (1994, Eqns. (3)–(4)). Suppose that

yt,1 − yt−1,1 = c (yt−1,2 − yt−1,1) + εt,1, (5.2)

yt,2 − yt−1,2 = d (yt−1,1 − yt−1,2) + εt,2, (5.3)

where the two elements of εt are stationary white noise steps at each time period.
The actual scenario considered by Murray (1994). are the steps of a drunk woman
and her puppy dog going out for a walk. The positions are on the real line and the
dog is unleashed. The walk of both are not quite random walks because at every
time point she calls out and the dog barks, and then they move toward each other.
The result is that the two paths are nonstationary but the distance between them
is stationary.

33
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Now rearrange (5.2)–(5.3) to give(
yt,1
yt,2

)
=

(
1− c c
d 1− d

)(
yt−1,1
yt−1,2

)
+ εt. (5.4)

Here, c and d are parameters to be estimated.
Write (5.4) as

Y t = Φ1Y t−1 + εt, εt ∼ N2(0, Ω) independently, t = 1, . . . , n, (5.5)

where normality is now assumed. Attention is drawn to the following four cases.
The normality assumption means that the family function binormal() can be
used for all of them.

1. Firstly, suppose that c + d = 1 so that Φ1 is of unit rank. This corresponds
to a VGLM with offsets and a constraint matrix (1, 1, 0, 0, 0)T for the variable
yt−1,2 − yt−1,1. It is a special case of the next model.

2. Secondly, if c + d 6= 1 then one can fit (5.4) as a VGLM using offsets. This is
because (

yt,1
yt,2

)
=

(
yt−1,1
yt−1,2

)
+

(
c 0
0 d

)(
yt−1,2 − yt−1,1
yt−1,1 − yt−1,2

)
+ εt. (5.6)

One can think of this as the ‘proper’ solution to this cointegration problem.
3. Thirdly, if Φ1 was a general matrix without having the structure imposed by

(5.4) then this might be fitted by regressing the Y t with Y t−1 as an ordi-
nary VGLM. This particular model is a vector autoregressive model of order-1,
commonly written as VAR(1).

4. Fourthly, suppose we stipulate that Φ1 is of rank-1. Then we can fit this as a
RR-VGLM. Like the third model, this model is not cointegrated.

As a numerical example, we select two responses from the four time series
considered in Ahn and Reinsel (1988). These concern the monthly averages of
grain prices in the United States for wheat flour, corn, wheat and rye for the
period January 1961–October 1972. The units are dollars per 100 pound sack for
wheat flour, and per bushel for corn, wheat and rye. We shall look at wheat and
rye only. The entire data set can be seen by

> year <- seq(1961 + 1/12, 1972 + 10/12, by = 1/12)

> for (j in 1:4)

plot(grain.us[, j] ~ year, main = names(grain.us)[j],

type = "b", pch = "*", ylab = "", col = "blue")

This produces Fig. 5.1.
To start off with, let’s get the data prepared.

> cgrain.df <- scale(grain.us, scale = FALSE) # Centre the time series only

> grain.df <- subset(cgrain.df, select = c(wheat, rye))

> N <- nrow(grain.df)

> grain.df <- transform(grain.df,

wheat.lag1 = c(NA, wheat[-N]),

rye.lag1 = c(NA, rye[-N]))

> grain.df <- grain.df[-1, ]

The first model can be fitted by
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Fig. 5.1 Monthly average prices of Grain series, January 1961–October 1972, in data
frame grain.us.

> grain.df <- transform(grain.df,

zedd = rye.lag1 - wheat.lag1,

zilch = 0)

> M1 <- 5 # For binormal()

> Hlist1 <- list(

"(Intercept)" = diag(M1)[, -(1:2)],

zedd = rbind(1, 1, 0, 0, 0))

> grain.fit1 <-

vglm(cbind(wheat, rye) ~ zedd,

offset = cbind(wheat.lag1, rye.lag1, zilch, zilch, zilch),

constraints = Hlist1,

binormal, data = grain.df)

> coef(grain.fit1, matrix = TRUE)

mean1 mean2 loglink(sd1) loglink(sd2) rhobitlink(rho)

(Intercept) 0.0000000 0.0000000 -2.4202 -2.8497 0.79465

zedd -0.0095059 -0.0095059 0.0000 0.0000 0.00000

> constraints(grain.fit1, matrix = TRUE)

(Intercept):1 (Intercept):2 (Intercept):3 zedd

mean1 0 0 0 1

mean2 0 0 0 1

loglink(sd1) 1 0 0 0

loglink(sd2) 0 1 0 0

rhobitlink(rho) 0 0 1 0

Then ĉ = −0.0095.
The second general cointegrated model can be fitted by

> grain.df <- transform(grain.df,

zedd1 = rye.lag1 - wheat.lag1,

zedd2 = wheat.lag1 - rye.lag1)

> Hlist2 <- list(

"(Intercept)" = diag(M1)[, -(1:2)],

zedd1 = rbind(1, 0, 0, 0, 0),

zedd2 = rbind(0, 1, 0, 0, 0))

> grain.fit2 <-

vglm(cbind(wheat, rye) ~ zedd1 + zedd2,

offset = cbind(wheat.lag1, rye.lag1, zilch, zilch, zilch),

constraints = Hlist2,
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binormal, data = grain.df)

> coef(grain.fit2, matrix = TRUE)

mean1 mean2 loglink(sd1) loglink(sd2) rhobitlink(rho)

(Intercept) 0.00000 0.000000 -2.4334 -2.8514 0.83046

zedd1 0.08195 0.000000 0.0000 0.0000 0.00000

zedd2 0.00000 0.031068 0.0000 0.0000 0.00000

> constraints(grain.fit2, matrix = TRUE)

(Intercept):1 (Intercept):2 (Intercept):3 zedd1 zedd2

mean1 0 0 0 1 0

mean2 0 0 0 0 1

loglink(sd1) 1 0 0 0 0

loglink(sd2) 0 1 0 0 0

rhobitlink(rho) 0 0 1 0 0

Some of the output here matches (5.6), viz. ĉ = 0.0819 and d̂ = 0.0311.
The third general VAR(1) model (not cointegrated) can be fitted by

> Hlist3 <- list(

"(Intercept)" = diag(M1)[, -(1:2)],

wheat.lag1 = diag(M1),

rye.lag1 = diag(M1))

> grain.fit3 <-

vglm(cbind(wheat, rye) ~ wheat.lag1 + rye.lag1,

constraints = Hlist3,

binormal, data = grain.df)

> coef(grain.fit3, matrix = TRUE)

mean1 mean2 loglink(sd1) loglink(sd2) rhobitlink(rho)

(Intercept) 0.00000 0.0000000 -2.4611 -2.8891 0.73678

wheat.lag1 0.86763 -0.0074515 0.0000 0.0000 0.00000

rye.lag1 -0.08697 0.8398803 0.0000 0.0000 0.00000

> constraints(grain.fit3, matrix = TRUE)

(Intercept):1 (Intercept):2 (Intercept):3 wheat.lag1:1

mean1 0 0 0 1

mean2 0 0 0 0

loglink(sd1) 1 0 0 0

loglink(sd2) 0 1 0 0

rhobitlink(rho) 0 0 1 0

wheat.lag1:2 rye.lag1:1 rye.lag1:2

mean1 0 1 0

mean2 1 0 1

loglink(sd1) 0 0 0

loglink(sd2) 0 0 0

rhobitlink(rho) 0 0 0

The fourth (not cointegrated) model can be fitted by

> Hlist4 <- Hlist3 # Same as the previous model

> grain.fit4 <-

rrvglm(cbind(wheat, rye) ~ wheat.lag1 + rye.lag1,

constraints = Hlist4,

str0 = 3:5, # The var-cov matrix elts are intercept-only

binormal, data = grain.df)

> coef(grain.fit4, matrix = TRUE)

mean1 mean2 loglink(sd1) loglink(sd2) rhobitlink(rho)
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(Intercept) 0.00000 0.00000 -2.0551 -2.431 1.8412

wheat.lag1 0.49761 -0.27139 0.0000 0.000 0.0000

rye.lag1 -0.71654 0.39080 0.0000 0.000 0.0000

> coef(grain.fit4)

(Intercept):1 (Intercept):2 (Intercept):3 wheat.lag1 rye.lag1

-2.05513 -2.43101 1.84117 0.49761 -0.71654

> constraints(grain.fit4, matrix = TRUE)

(Intercept):1 (Intercept):2 (Intercept):3 wheat.lag1 rye.lag1

mean1 0 0 0 1.00000 1.00000

mean2 0 0 0 -0.54539 -0.54539

loglink(sd1) 1 0 0 0.00000 0.00000

loglink(sd2) 0 1 0 0.00000 0.00000

rhobitlink(rho) 0 0 1 0.00000 0.00000

It is conceivable that a VGAM family function might be written to estimate the
parameters of a N3(µ, Σ) distribution, called trinormal() say. If so then one
could fit cointegration models to a set of three times series using the basic VGAM
infrastructure presented above.

Bibliographic Notes

Some recent work on RR-VGLMs include the following. Bura et al. (2016) develop
RRR for models in the exponential family; basing their work on Bura and Yang
(2011) and making use of the alternating algorithm, two asymptotic tests for the
dimension R are described. Bura et al. (2018) develops asymptotic theory for
RR-VGLMs, based on M-estimation for concave criterion functions maximized
over non-convex and non-closed parameter spaces; the consistency and asymptotic
distribution of MLEs for RR-VGLMs are derived.

Recently, Powers et al. (2018) propose a nuclear penalized multinomial regres-
sion model—it is somewhat similar to the stereotype model but uses a different
type of RRR. They apply it to predicting bat outcomes in baseball.





Chapter 8

Complements: Using the VGAM Package

8.1 Introduction

This chapter looks at some more topics related to using the VGAM package.

8.1.1 On Fitted Values

Some VGAM family functions have an argument called type.fitted which allows
different types of ‘fitted values’ to be returned by the fitted() generic. This
argument is assigned a vector of possible values, and the first is taken as the default.
Usually the default is "mean" to signify the mean. Another common alternative is
to return quantiles ("quantiles" or "percentiles"), in which case the argument
percentiles is relevant and can accept a vector of percentiles (values in [0, 100],
although the values 0 and 100 are not recommended in general).

Suppose fit is a fitted model whose family function has the type.fitted ar-
gument. Then the following calls should work:

> fitted(fit1, type.fitted = "quantiles", percentiles = c(5, 25, 80))

> predict(fit1, newdata = head(ndata), type = "response",

type.fitted = "quantiles",

percentiles = c(33+1/3, 66+2/3))

> predict(fit1, type = "response",

type.fitted = "quantiles",

percentiles = c(33+1/3, 66+2/3))

In the above the call to fitted() passes the new percentile values into the
@linkinv slot using the @extra slot of the object. Assigning any acceptable value
of the family function’s type.fitted should work, i.e., any of the possible values
specific to that family function.

The remainder of this section concerns the labelling of the fitted values. Cur-
rently, a vector response or a 1-column matrix response results in the internal
variable y in vglm() being a vector (due to model.response() being called),
hence colnames(y) returns a NULL. Consequently for many VGAM family func-
tions, when the fitted values of the fitted model are obtained using fitted() then
it is not possible to label the 1-column matrix response with the name of the
response. Here is an example.

39
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> fit1 <- vglm(y1 ~ 1, zoabetaR, data = odata)

> fit1 <- vglm(cbind(y1) ~ 1, zoabetaR, data = odata) # Same as previous

> fit2 <- vglm(cbind(y1, y2) ~ 1, zoabetaR, data = odata)

> fitted(fit1) # No colnames

> fitted(fit2) # Does have colnames labelling

Multi-column responses should not have any labelling problems.
With multiple responses, currently the fitted values for type.fitted =

"quantiles" are enumerated in an order that makes its use with respect to the
response matrix easier. Here is an example.

> set.seed(1)

> ndata <- data.frame(x2 = runif(nn <- 200))

> ndata <- transform(ndata, y1 = rnbinom(nn, mu = exp(1+x2), size = exp(1)))

> ndata <- transform(ndata, y2 = rnbinom(nn, mu = exp(2+x2), size = exp(1)))

> fit1 <- vglm(cbind(y1, y2) ~ x2, negbinomial, data = ndata)

> head(fitted(fit1, type.fitted = "quantiles", percentiles = c(5, 25, 80)))

5%y1 5%y2 25%y1 25%y2 80%y1 80%y2

[1,] 0 1 1 5 6 14

[2,] 0 2 2 5 6 16

[3,] 0 2 2 7 7 21

[4,] 1 4 3 11 9 31

[5,] 0 1 1 4 5 13

[6,] 1 4 3 11 9 31

> predict(fit1, newdata = head(ndata), type = "response",

type.fitted = "quantiles",

percentiles = c(33+1/3, 66+2/3))

33.333%y1 33.333%y2 66.667%y1 66.667%y2

1 2 6 4 11

2 2 7 5 13

3 3 9 5 16

4 3 13 7 24

5 2 5 4 10

6 3 13 7 24

> head(

predict(fit1, type = "response",

type.fitted = "quantiles",

percentiles = c(33+1/3, 66+2/3))

)

33.333%y1 33.333%y2 66.667%y1 66.667%y2

[1,] 2 6 4 11

[2,] 2 7 5 13

[3,] 3 9 5 16

[4,] 3 13 7 24

[5,] 2 5 4 10

[6,] 3 13 7 24

> myres <- c(depvar(fit1)) - fitted(fit1, type.fitted = "quantiles")

> colMeans(myres) # ’Residuals’

25%y1 25%y2 50%y1 50%y2 75%y1 75%y2

2.605 6.935 0.735 1.945 -1.810 -4.840

These types of ‘residuals’ are easily computed by recycling.
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8.1.2 Automating calls using for loops

The following code fits 4 types of cumulative link models. These are combinations
of parallel and non-parallel, and 2 choices of link functions. Currently, it is nec-
essary to do some slightly more advanced programming involving substitute()

and parse() in order to get this to work. In the future the relevant VGAM internals
may change, therefore this solution might change too.

> data("pneumo")

> pneumo <- transform(pneumo, let = log(exposure.time))

>

> for (par in c(TRUE, FALSE)) {
for (lnk in c("logitlink", "clogloglink")) {

cat("\n\n\n")
cat("link:", lnk, ", parallel:", par, "\n")
my.call <- eval(substitute(expression({ paste(

"vglm(cbind(normal, mild, severe) ~ let, ",

"cumulative(link = ’", .lnk , "’, ",

"parallel = ", .par ,

", reverse = TRUE), ",

"data = pneumo)", sep = "")

}), list( .par = par, .lnk = lnk )))

emc <- eval(my.call)

fit <- eval(parse(text = emc))

print(coef(fit, matrix = TRUE))

}
}

link: logitlink , parallel: TRUE

logitlink(P[Y>=2]) logitlink(P[Y>=3])

(Intercept) -9.6761 -10.5817

let 2.5968 2.5968

link: clogloglink , parallel: TRUE

clogloglink(P[Y>=2]) clogloglink(P[Y>=3])

(Intercept) -8.5988 -9.3547

let 2.2094 2.2094

link: logitlink , parallel: FALSE

logitlink(P[Y>=2]) logitlink(P[Y>=3])

(Intercept) -9.5933 -11.1048

let 2.5713 2.7435

link: clogloglink , parallel: FALSE

clogloglink(P[Y>=2]) clogloglink(P[Y>=3])

(Intercept) -8.5090 -10.5706

let 2.1819 2.5507



42 8 Complements: Using the VGAM Package

The estimated B matrices of each fit is printed out. 1

8.1.3 The save.weights argument

The save.weights argument in vglm.control() specifies whether the working
weight matrices of the fitted object are saved on the object. When TRUE the ob-
ject can be much larger, because a matrix (of size up to nM(M + 1)/2 doubles)
is assigned to the @weights slot. For models where SFS is used one wants to
have save.weights = TRUE because of reproducibility: one wants functions such
as vcov() to return results corresponding exactly to the fit and not have to ob-
tain another SFS estimate at a post-fit stage. For those models estimated solely
by SFS the family function should have its own control function that assigns
save.weights = TRUE by default. Typically, the function is called something like
famfun.control().

But what about family functions which use SFS optionally? For example,
negbinomial() allows direct computation and SFS for the working weights, and
there are arguments that control which algorithm is used. Then VGAM will save
the working weights on the object if SFS is used at all, i.e., save.weights is
ignored. If the direct algorithm is used then save.weights is used.

Bibliographic notes

Yee (2020) demonstrates the use of VGAM for the typical user, using negative
binomial regression as the main vehicle. Some emphasis is placed on newer features
since Yee (2015).

1 Thanks to Max Kuhn for motivating this problem and solution.
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Exercises

In general, any form of

exercise, if pursued con-

tinuously, will help train

us in perseverance.

—Mao Zedong





Part II

Some Applications





Chapter 11

Complements: Univariate Discrete
Distributions

11.1 Introduction

This chapter looks at some more topics related to discrete distributions, especially
as related to the VGAM package.

11.2 More on Negative Binomial Regression

11.2.1 Hypothesis Testing

A common test when performing negative binomial regression is a test of the Pois-
son assumption, that is, testing H0 : k =∞. Some results for this are summarized
in Dean and Lawless (1989) and are summarized further here. As this is a test of
whether a parameter is on the boundary of the parameter space, the results of, e.g.,
Moran (1971) apply. When k = ∞, the distribution of Z =

√
n k̂−1 i(β̂1,∞)1/2

asymptotically has a half-normal distribution for Z > 0 and a probability mass
of 1

2 at 0. Here, β̂1 is the MLE of β1 obtained under H0 (i.e., a Poisson regres-
sion), and i the expected information. Alternatively, one can use analogous results
of Chernoff (1954), which show that the LRT statistic for testing H0 is asymp-
totically like a random variable having a probability mass of 1

2 at 0 and a 1
2χ

2
1

distribution above 0. What this means in practice is that one can divide the usual
LRT p-value by 2. The following illustrates the test on the V1 data set.

> poisfit <- vglm(hits ~ 1, poissonff, weights = ofreq, data = V1)

> nbdfit <- vglm(hits ~ 1, negbinomial, weights = ofreq, data = V1)

> Coef(poisfit)

lambda

0.93229

> Coef(nbdfit) # ’size’ is quite large but is it Inf?

mu size

0.93229 24.95898

> # P-value:

> pchisq(2 * (logLik(nbdfit) - logLik(poisfit)), df = 1,

lower = FALSE) / 2

47
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[1] 0.26088

(One cannot apply lrtest(), so the p-value is computed manually.) The p-value is
large, therefore there is no evidence against the null hypothesis of the data coming
from a Poisson distribution. This seems to confirm the belief that the guidance
system of the doodle bugs was so primitive that essentially it was random about
the intended target (central London—maybe Buckingham Palace or Churchill’s
bedroom?).

11.3 Marginal Effects

Section 14.1.4 talks about marginal effects for categorical regression models. This
quantity is used by econometricians especially (and it is related to another quan-
tity known as the elasticity). Even easier are marginal effects for certain count
distributions. For Poisson regression it is almost trivial to show that

∂µi
∂xk

=
∂eηi

∂ηi

∂ηi
∂xk

= µi βk

where the linear predictor is written here simply as η =
∑
d βdxd. Note this is

crucially based on a log link—the code does not handle otherwise.
For negbinomial(), the first linear predictor of each response is also η = log µ,

hence its computation is the same. It is also true for posnegbinomial() models.
Information about the VGAM software implementation for marginal effects is

given in Section 18.3.1. Some very introductory material about marginal effects
for Poisson regression can be found in Hilbe (2011, pp.125–34).

11.4 New VGAM Family Functions

Table 11.1 summarizes some new VGAM family functions for discrete distributions.
Here are some skeleton details for some of them.

eq:dgenpois0

11.4.1 The Bell Distribution

Castellares et al. (2018) propose the Bell distribution for count regression. This
section is based on that paper.

The Bell distribution is based on the expansion

exp(ex − 1) =

∞∑
t=0

Bt
t!
xt, (11.1)

for real x (Bell, 1934b,a), where Bt is the tth Bell number defined by
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Bt = e−1
∞∑
i=0

it

i!
. (11.2)

The first few values of the Bell series are B0 = B1 = 1, B2 = 2, B3 = 5, B4 = 15,
B5 = 52, B6 = 203, B7 = 877. From these, one can define the Bell distribution as

Pr(Y = y; s) =
sy exp(1− es)By

y!
, y = 0(1)∞, 0 < s. (11.3)

Castellares et al. (2018) summarize and derive some properties of this distribution,
e.g.,

� it is a member of the 1-parameter exponential family;
� the Bell numbers Bt are the tth moments of the Poisson distribution;
� the distribution is strongly unimodal and infinitely divisible;
� the mean is E(Y ) = ses (the fitted values of the family function bellf()), and

Var(Y ) = s(1 + s)es;
� having an index of dispersion Var(Y )/E(Y ) = 1+s, it can model overdispersion

(but not undispersion), although it has limited capabilities in this area because
the amount of overdispersion accommodated is constrained by the mean;

� they show that although the Poisson is not a special case, it corresponds to a
special case of the multiple Poisson process, and the distribution approaches
the Poisson as s→ 0;

� Y = A1+· · ·+AN ∼ Bell(s) where N ∼ Pois(es−1) and At ∼ Positive− Pois(s)
are i.i.d. This serves the basis of rbell().

For one observation, its EIM is (1+s)es/s. The family function bellff() estimates
the distribution by Fisher scoring.

An alternative parameterization involves the Lambert W function so that η =
logµ is theoretically possible. This arises because µ = ses so that s = W0(µ) and

Pr(Y = y; s) = exp{1− eW0(µ)} W0(µ)y By
y!

, y = 0(1)∞, 0 < s (11.4)

is an alternative to (11.3). However, currently η = log s is the default linear pre-
dictor of bellff().

Currently, because the Bell numbers rapidly increase, in practice the yi should
not exceed 218 in value. Thus the regression method is limited to relatively small
counts.

11.4.2 Differenced Zeta Distribution

The parameter s is the positive shape parameter, and a is the argument start of
the VGAM family function diffzeta(). The quantity A used for the fitted value
is

A =

a∑
i=1

1

is
.
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According to Moreno-Sánchez et al. (2016), this model fits quite well to about 40
percent of all the English books in the Project Gutenberg data base (about 30,000
texts). Like most VGAM family functions, multiple responses are handled.

Bibliographic notes

Testing whether a given data set reasonably comes from a specified distribution
is not given much emphasis in the chapter. A book on this important problem
is Thas (2010), which is mainly concerned about goodness-of-fit tests, including
tests for the one-sample problem where we wish test the hypothesis that the sample
observations have a hypothesized distribution.

Some multivariate count distributions such as the negative-multinomial and the
generalized Dirichlet-multinomial can be fitted by iteratively reweighted Poisson
regressions (IRPR). This algorithm is simple and has good properties such as
stability and favourable convergence properties. IRPR was proposed in Zhang
et al. (2017) and has advantages over IRLS because the EIMs are expensive to
compute. The VGAM package could be adapted to perform IRPR.

A very introductory book for the practitioner on modelling counts is Hilbe
(2014).

Some count distributions for underdispersed data are described in Sellers and
Morris (2017).
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Exercises

Ex. 11.1. Show that the negative binomial distribution is strictly unimodal, i.e.,
that the first derivative of the PMF with respect to y has only one root.

Ex. 11.2. Consider the EBBD PMF (??). If ρ = µ = 1
2 , show that the PMF

becomes a discrete uniform distribution.

Ex. 11.3. Use Euler’s difference formula

k∑
n=0

(−1)k−n
(
k

n

)
(A+Bn)p =

{
0, 0 ≤ p < k,
Bk k!, p = k.

to show that

∞∑
y=0

(θ + yλ)y

y!
e−yλ−θ =

1

1− λ
, − λ0 < λ < 1,

where λ0 solves λ eλ = exp(−1), i.e., λ0 ≈ 0.278 (Tuenter, 2000).
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Chapter 12

Complements: Univariate Continuous
Distributions

12.1 Introduction

This chapter looks at some updates since Yee (2015) on some more topics related
to continuous distributions, especially as related to the VGAM package.
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Chapter 14

Complements: Categorical Data Analysis

14.1 Introduction

This chapter looks at some more topics related to categorical data analysis, espe-
cially as related to the VGAM package.

14.1.1 Some Jargon

In the literature the proportional odds model is known the ordered logit model.
It can be fitted with the VGAM family function propodds(). The generalized
ordered logit model is the nonproportional odds model, also know as the non-
parallel cumulative logit model ; it can be fitted with the VGAM family function
cumulative(reverse = TRUE). Here, we use reverse = TRUE to make the signs
of the regression coefficients the same between the two type of models. The or-
dered logit model is a special case of the generalized ordered logit model, as is the
partial proportional odds model too.

On the nonproportional odds model McCullagh and Nelder (1989, p.155) writes
“The usefulness of non-parallel regression models is limited to some extent by the
fact that the lines must eventually intersect. Negative fitted values are then un-
avoidable for some values of x, though perhaps not in the observed range. If
such intersections occur in a sufficiently remote region of the x-space, this flaw
in the model need not be serious.” With vglm(..., family = cumulative) the
half-stepping and @validparams features should stop the ηj(xi) from actually in-
tersecting inside the data set’s x-space (but approaching it, to machine precision).
Hence it is highly recommended that users set trace = TRUE in order to monitor
convergence. Some warnings may also be issued. Any nonstandard convergence
behaviour is suggestive of the intersecting-ηj problem.

Also, profile likelihood methods may fail when applied to cumulative() mod-
els because the ηj(xi) may intersect a little beyond their MLE. The func-
tions to be vigilant of include profile(), vplot.profile(), vpairs.profile(),
confint(... , method = "profile").

55
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14.1.2 The R2latvar() Function

VGAM has the R2latvar() utility function which returns a measure of predictive
power for some types of cumulative link models. In a nutshell, it treats the model
like a LM and computes R2 on the η-scale. The following description draws from
Agresti (2019, Sec. 6.3.7).

Consider a cumulative link model with the parallelism assumption applying to
all ηj . This makes Var(ηij) the same for all values of j. If the link is a logitlink,
probitlink or clogloglink then the η-scale corresponds the standard logistic,
standard normal and standard extreme value (log-Weibull) distributions respec-
tively, according to the latent variable interpretation (see, e.g., Section 14.4.1.1 of
Yee (2015), Agresti (2019, Sec. 6.2.6), McCullagh and Nelder (1989, Sec. 5.2.2)).
That is, the link function corresponds to the inverse of the CDF of those distri-
butions. These distributions have variances π2/3, 1, and π2/6, respectively—these
are Var(ε) in (14.18).

Consider computing the coefficient of determination R2 of (14.18), treated as a
LM. Recall for a LM that R2 = 1−ResSS/TotSS = 1− FV U , where FV U is the
fraction of variance unexplained. Since R2 = RegSS/TotSS, we can compute

R2
η =

Var(Y ′)

Var(Y ′) + Var(ε)
. (14.1)

The subscript η here is used to emphasize that the scale is on the latent variable
or η scale (possibly, using a subscript ν would be more in keeping with the rest of
the book). Since the linear predictors are all parallel, we can choose the first one
η1, say, to represent the ηj scale. The latent variable scores are ηi1 for i = 1, . . . , n.
Then (14.1) can be estimated using sample variances by

R̂2
η =

V̂ar(ηi1)

V̂ar(ηi1) + Var(ε)
. (14.2)

Incidentally, some software such as Stata call the quantity the McKelvey–Zavoina
R-squared, which was proposed in McKelvey and Zavoina (1975) for measuring
the goodness of fit in cumulative probit models.

Here is a numerical example, mimicking Agresti (2019). Note: as of mid-2022,
the following call to read.table() doesn’t actually work, however the file can
be downloaded manually. And the problem is encountered more than once in this
chapter.

> Polviews2 <-

read.table("http://users.stat.ufl.edu/~aa/cat/data/Polviews2.dat",

header = TRUE)

> fitlogit <- vglm(ordered(ideology) ~ factor(party) + factor(gender),

cumulative(parallel = TRUE), data = Polviews2)

> fitprobit <- vglm(ordered(ideology) ~ factor(party) + factor(gender),

cumulative(link = "probitlink", parallel = TRUE),

data = Polviews2)

> R2latvar(fitlogit)

[1] 0.48699

> R2latvar(fitprobit)
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[1] 0.49452

For fitlogit Agresti (2019) says that we predict that 48.7% of the variability in
the political ideology latent variable is explained by the two explanatory variables,
and that this value is ‘moderately large’.

One can compute the above manually, as follows.

> eta1 <- predict(fitlogit)[, 1] # Use the 1st linear predictor, say

> var(eta1) / (var(eta1) + (pi^2)/3)

[1] 0.48699

> eta2 <- predict(fitprobit)[, 2] # Use the 2nd linear predictor, say

> var(eta2) / (var(eta2) + 1)

[1] 0.49452

14.1.3 The ordsup() Function

Agresti and Kateri (2017) propose ‘ordinal superiority’ measures for the linear
model and cumulative link models. These involve the probability that an observa-
tion from one distribution falls above an independent observation from the other
distribution, adjusted for explanatory variables in a model. In fact it allows two
groups to be compared without supplementary explanatory variables. Let Y1 and
Y2 be independent random variables from groups A and B, say, for a quantitative
ordinal categorical scale. Then

∆ = Pr(Y1 > Y2)− Pr(Y2 > Y1) (14.3)

summarizes their relative size. A second quantity is

γ = Pr(Y1 > Y2)− 1

2
Pr(Y2 = Y1). (14.4)

Then it is easily shown that they are interrelated by

∆ = 2× γ − 1, (14.5)

γ = (∆+ 1)/2. (14.6)

The range of γ is [0, 1], while for ∆ it is [−1, 1].
Note that the notation defining groups A and B is that there is a variable (call

it x2, say) such that x2 = 1 for group A (aka Y1) and x2 = 0 for group B (aka
Y2). Some sketch details for the cumulative probit model are as follows: letting
η∗ = β∗(1)2 x2 + xTβ∗, then the latent variable ν∗ ∼ N(η∗, 1) and hence

γ = Pr[Y1 > Y2] = Pr[ν∗1 > ν∗2 ]

= Pr

[
ν∗1 − ν∗2 − β∗(1)2√

2
>
−β∗(1)2√

2

]
= Φ

(
β∗(1)2√

2

)
.

For the above quantities γ and ∆, the ordsup() function is currently imple-
mented for a very limited number of specific models—cumulative() with link =
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"logitlink" or link = "probitlink", and uninormal() with the default set-
tings to handle the LM. By default only binary variables are chosen from all the
explanatory variables. Confidence intervals are also available.

The following mimics the example from Agresti and Kateri (2017). It concerns
a data set with n = 40 having a four-category response variable measuring mental
impairment (1 = well, 2 = mild symptom formation, 3 = moderate symptom
formation, 4 = impaired) to a binary indicator of socioeconomic status (ses: 0 =
low, 1 = high) and a quantitative life-events (life) index taking values from the
set 0:9.

> Mental <-

read.table("http://users.stat.ufl.edu/~aa/glm/data/Mental.dat",

header = TRUE)

> Mental$impair <- ordered(Mental$impair) # It is really ordinal

> summary(with(Mental, impair))

1 2 3 4

12 12 7 9

> pfit3 <- vglm(impair ~ ses + life, data = Mental,

cumulative(link = "probitlink", reverse = TRUE,

parallel = TRUE))

> coef(pfit3, matrix = TRUE)

probitlink(P[Y>=2]) probitlink(P[Y>=3]) probitlink(P[Y>=4])

(Intercept) 0.16118 -0.74563 -1.33917

ses -0.68336 -0.68336 -0.68336

life 0.19535 0.19535 0.19535

> unlist(ordsup(pfit3)) # The ’ses’ variable is binary

gamma.ses Delta.ses

0.31447 -0.37105

According to Agresti and Kateri (2017, p.216), one can intepret γ̂ as follows. To

compare the two levels of ses using β̂∗(1)2 = −0.68336, we can use γ̂ ≈ 0.314.

The ordinal superiority measure γ̂ has the interpretation that at any particular
value for life events, there is about a 1/3 chance of lower mental impairment at
low ses than at high ses. The 95% profile likelihood confidence interval for β∗(1)2
yields confidence intervals (0.161, 0.507) for γ. Such CIs can be obtained as follows
(Wald intervals not used):

> unlist(ordsup(pfit3, confint = TRUE, method = "profile"))

gamma.ses Delta.ses lower.gamma.ses upper.gamma.ses Lower.Delta.ses

0.314475 -0.371050 0.160801 0.507490 -0.678398

Upper.Delta.ses

0.014981

For illustration’s sake only, now fit a crude LM to these data:

> fit7 <- vglm(as.numeric(impair) ~ ses + life, uninormal, Mental)

> coef(fit7, matrix = TRUE) # Parameter ’sd’ is estimated by MLE
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mean loglink(sd)

(Intercept) 1.91974 -0.012378

ses -0.64501 0.000000

life 0.17778 0.000000

> ordsup(fit7)

$gamma

ses

0.32212

$Delta

ses

-0.35575

> ordsup(fit7, all.vars = TRUE) # Some output may not be meaningful

$gamma

ses life

0.32212 0.55064

$Delta

ses life

-0.35575 0.10128

This example is quite crude because it treats as.numeric(impair) as normal
about a fitted multiple linear regression plane.

14.1.4 More on Ordinal Categorical Data

The following is drawn from Agresti and Tarantola (2018).
There are some marginal effect variants, which are described in Long (1997),

Long and Freese (2014), Greene (2018). The average marginal effect (AME) is the
marginal effect of xk at each of the n sample values of the explanatory variables and
then averages them out. An alternative is the marginal effect at the mean (MEM)
which computes the marginal effect at x, i.e., each explanatory variable set at its
mean. A third marginal effect is known as marginal effect at representative values
(MER) by setting all the explanatory variables at values of interest.

Here are some musings based on Agresti (2019, Sec. 6.3.4).

> Mental <-

read.table("http://users.stat.ufl.edu/~aa/cat/data/Mental.dat",

header = TRUE)

> Mfit <- vglm(ordered(impair) ~ life + ses, propodds, data = Mental)

> meMfit <- margeff(Mfit)

> dimnames(meMfit)

[[1]]

[1] "(Intercept)" "life" "ses"

[[2]]

[1] "1" "2" "3" "4"
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[[3]]

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15"

[16] "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"

[31] "31" "32" "33" "34" "35" "36" "37" "38" "39" "40"

> meMfit[-1, "1", ] # Look at one of them; it is a matrix

1 2 3 4 5 6 7

life -0.07474 -0.032458 -0.06744 -0.075878 -0.079394 -0.064982 -0.072935

ses 0.26047 0.113113 0.23502 0.264429 0.276684 0.226457 0.254175

8 9 10 11 12 13 14

life -0.079394 -0.079394 -0.050516 -0.072935 -0.064982 -0.069103 -0.028747

ses 0.276684 0.276684 0.176045 0.254175 0.226457 0.240821 0.100182

15 16 17 18 19 20 21

life -0.079394 -0.072935 -0.041027 -0.078989 -0.036728 -0.069103 -0.032458

ses 0.276684 0.254175 0.142975 0.275271 0.127993 0.240821 0.113113

22 23 24 25 26 27 28

life -0.055549 -0.079394 -0.07474 -0.078153 -0.075878 -0.055549 -0.012545

ses 0.193586 0.276684 0.26047 0.272359 0.264429 0.193586 0.043718

29 30 31 32 33 34 35

life -0.060228 -0.045834 -0.055549 -0.041027 -0.078989 -0.050516 -0.036728

ses 0.209889 0.159730 0.193586 0.142975 0.275271 0.176045 0.127993

36 37 38 39 40

life -0.045834 -0.045834 -0.041027 -0.016737 -0.012545

ses 0.159730 0.159730 0.142975 0.058326 0.043718

> # Approximate AME

> rowMeans(meMfit[-1, "1", ]) # Almost the same (ses is slightly different)

life ses

-0.057155 0.199181

> rowMeans(meMfit[-1, "4", ]) # Almost the same (ses is slightly different)

life ses

0.047745 -0.166387

> apply(meMfit[-1, "1", ], 1, sd) # Differs from book’s SE

life ses

0.020377 0.071011

> apply(meMfit[-1, "4", ], 1, sd) # Differs from book’s SE

life ses

0.021232 0.073994

Now compare with the results in the book:

> library("MASS") # To get polr()

> library("erer", quietly = TRUE) # To get ocME()

> pfit <- polr(factor(impair) ~ life + ses, method="logistic", Mental)

> ocME(pfit) # Marginal effects at the mean

Re-fitting to get Hessian

effect.1 effect.2 effect.3 effect.4

life -0.062 -0.014 0.027 0.049

ses 0.208 0.053 -0.084 -0.176
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One might try obtaining the MEM as follows. It involves replacing the first row
by the sample mean. The fitted.values slot is also assigned in case it is used by
margeff().

> x.lm <- model.matrix(Mfit, type = "lm")

> x.lm[1, ] <- colMeans(x.lm) # Replace 1st row by the sample mean

> Mfit@x <- x.lm # Replace

>

> # This does not always work:

> fv.temp <- predict(Mfit, data.frame(x.lm[1, -1, drop = FALSE]),

type = "response")

>

> Mfit@fitted.values[1, ] <- fv.temp # Replace

> meMfit <- margeff(Mfit)

> meMfit[-1, "1", 1] # Unfortunately not the same as the book

life ses

-0.07474 0.26047

> meMfit[-1, "4", 1] # Unfortunately not the same as the book

life ses

0.014383 -0.050122

The trick has failed—the answer here is not the same as the book.

14.2 Constraints on the Intercepts

For ordinal models, argument thresholds implements some constraints on the
intercepts which may be useful for some data sets, e.g., thresholds = "symm0".
For instance, they may be equidistant, or symmetric about the origin.

Here are some examples.

� "equid", e.g.,

> CM.equid(4)

[,1] [,2]

[1,] 1 0

[2,] 1 1

[3,] 1 2

[4,] 1 3

> CM.equid(5, Trev = TRUE, Tref = 3)

[,1] [,2]

[1,] 1 2

[2,] 1 1

[3,] 1 0

[4,] 1 -1

[5,] 1 -2

Hence the first regression coefficient corresponds to the baseline value and the
second to the distance (better, displacement, since it may be positive or negative
depending on the direction) moving away from the baseline value.

� "symm1", e.g.,
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> CM.symm1(4)

[,1] [,2] [,3]

[1,] 1 0 -1

[2,] 1 -1 0

[3,] 1 1 0

[4,] 1 0 1

> CM.symm1(5)

[,1] [,2] [,3]

[1,] 1 0 -1

[2,] 1 -1 0

[3,] 1 0 0

[4,] 1 1 0

[5,] 1 0 1

The median corresponds to the first column (and middle row if M is odd), and
the displacements are the other columns.

� "symm0", e.g.,

> CM.symm0(4)

[,1] [,2]

[1,] 0 -1

[2,] -1 0

[3,] 1 0

[4,] 0 1

> CM.symm0(5)

[,1] [,2]

[1,] 0 -1

[2,] -1 0

[3,] 0 0

[4,] 1 0

[5,] 0 1

The median intercept is 0 by definition so is not estimated. The remaining
intercepts are estimated and comprise pairs that differ by sign only. Symmetry
about the origin corresponds to deleting the first column from the "symm1" case.

Of course, these type of H1 can be seen by typing something like
constraints(fit)[[1]].

14.3 On the Conditional Logit Model

Section 14.2.1 applies the xij argument to the multinomial logit model and illus-
trates the idea on the TravelMode data frame in AER. Unfortunately the smooth-
ing method there was wrong, as explained below. The section is concerned with
the mode choice for travel between the Australian cities Sydney and Melbourne.While Melbourne and

Sydney fight about who

wears Australia’s cul-

tural crown, Canberra

just gets on with it.

—Judy Horacek

Recall that there are 210 people’s choice of transportation for travel between the
two cities. Four choices of travel mode are air, trn (train), bus and car. The
data set arises from case-control data: almost an equal number of each choice is
represented. The explanatory variables are x2 = gcost (a measure of the gener-
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alized cost of the travel), x3 = wait (the terminal waiting time, 0 for car), and
x4 = household income. The variables gcost and wait clearly differ for each travel
mode. In contrast, variable income is individual-specific so that every person has
the same fixed household income regardless what choice he/she made. It is stated
that the reason for subtracting wait and gcost of the cars option from the others
is because cars are the baseline group, cf. (3.37).

We now give some details behind (3.37). For j = 1, 2, 3 = M ,

ηj = log
Pr(Y = j)

Pr(Y = M + 1)

= log

[
exp(β(j)1 + β∗(1)2 xi2j + β∗(1)3 xi3j + β(1)4 xi4)/

∑
k exp(ηk)

exp(β(4)1 + β∗(1)2 xi24 + β∗(1)3 xi34 + β(4)4 xi4)/
∑
k exp(ηk)

]
(14.7)

= β∗(j)1 + β∗(1)2 (xi2j − xi24) + β∗(1)3 (xi3j − xi34) + β∗(1)4 xi4.

The lastline is (3.37). Note that we can only subtract the covariate values of the
baseline group when the component function is linear.

More generally and from first principles, suppose that

Pr(Y = j) =
exp[β(j)1 + f∗(1)2(xi2j) + β∗(1)3xi3j + β∗(1)4xi4]∑4

k=1 exp(ηk)

for some smooth function f∗(1)2. That is, we allow the effect of x2 to be nonlinear.
Then we have, for j = 1, . . . , 3,

ηj = β∗(j)1 + f∗(1)2(xi2j)− f∗(1)2(xi24) + β∗(1)3 xi3j − β
∗
(1)3 xi34 + β∗(1)4 xi4

= β∗(j)1 + g∗(1)2(xi2j , xi24) + β∗(1)3 (xi3j − xi34) + β∗(1)4 xi4, say,

6= β∗(j)1 + h∗(1)2(xi2j − xi24) + β∗(1)3 (xi3j − xi34) + β∗(1)4 xi4, say.

Unfortunately the h∗ function here is estimated in Section 3.4.2 and this is erro-
neous; what we want to fit is the g∗ function.

The following code fits the g∗ functions correctly. It relies on the property
that the regression splines are a linear combination of some B-spline basis func-
tions. Also, it is important that the term in the main formula representing the
xij term (called the placeholder) can be used for plotting the component function
later. Hence the knots of the placeholder must be correct. Using something like
NS(gcost) as a placeholder would not be good since its knots would be incorrect.

> data("TravelMode", package = "AER")

> air.df <- subset(TravelMode, mode == "air") # Form 4 smaller data frames

> trn.df <- subset(TravelMode, mode == "train")

> bus.df <- subset(TravelMode, mode == "bus")

> car.df <- subset(TravelMode, mode == "car")

> TravelMode2 <- data.frame(income = air.df$income,

wait.air = air.df$wait - car.df$wait,

wait.trn = trn.df$wait - car.df$wait,

wait.bus = bus.df$wait - car.df$wait,

gcost.air = air.df$gcost, # No subtraction here

gcost.trn = trn.df$gcost, # No subtraction here

gcost.bus = bus.df$gcost, # No subtraction here

gcost.car = car.df$gcost,

gcost = air.df$gcost, # Value unimportant

wait = air.df$wait) # Value unimportant
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> TravelMode2$mode <- subset(TravelMode, choice == "yes")$mode # Response

> NS <- function(x, ..., df = 3)

ns(c(x, ...), df = df)[1:length(x), , drop = FALSE]

>

> tfit2 <-

vglm(mode ~ NS(gcost.air, gcost.bus, gcost.trn, gcost.car) +

wait + income, trace = TRUE,

multinomial(parallel = FALSE ~ 1), data = TravelMode2,

xij = list(NS(gcost.air, gcost.bus, gcost.trn, gcost.car) ~

I(NS(gcost.air, gcost.bus, gcost.trn, gcost.car) -

NS(gcost.car, gcost.air, gcost.bus, gcost.trn)) +

I(NS(gcost.trn, gcost.car, gcost.bus, gcost.air) -

NS(gcost.car, gcost.air, gcost.bus, gcost.trn)) +

I(NS(gcost.bus, gcost.trn, gcost.car, gcost.air) -

NS(gcost.car, gcost.air, gcost.bus, gcost.trn)),

wait ~ wait.air + wait.trn + wait.bus),

form2 = ~ NS(gcost.air, gcost.bus, gcost.trn, gcost.car) +

wait + income +

I(NS(gcost.air, gcost.bus, gcost.trn, gcost.car) -

NS(gcost.car, gcost.air, gcost.bus, gcost.trn)) +

I(NS(gcost.trn, gcost.car, gcost.bus, gcost.air) -

NS(gcost.car, gcost.air, gcost.bus, gcost.trn)) +

I(NS(gcost.bus, gcost.trn, gcost.car, gcost.air) -

NS(gcost.car, gcost.air, gcost.bus, gcost.trn)) +

wait.air + wait.trn + wait.bus)

Iteration 1: deviance = 391.32835

Iteration 2: deviance = 384.16662

Iteration 3: deviance = 383.95106

Iteration 4: deviance = 383.95072

Iteration 5: deviance = 383.95072

Let’s look at the coefficients:

> coef(tfit2, matrix = TRUE)

log(mu[,1]/mu[,4])

(Intercept) 7.102414

NS(gcost.air, gcost.bus, gcost.trn, gcost.car)1 -2.474438

NS(gcost.air, gcost.bus, gcost.trn, gcost.car)2 -6.605724

NS(gcost.air, gcost.bus, gcost.trn, gcost.car)3 -3.298851

wait -0.097368

income -0.025886

log(mu[,2]/mu[,4])

(Intercept) 5.086642

NS(gcost.air, gcost.bus, gcost.trn, gcost.car)1 -2.474438

NS(gcost.air, gcost.bus, gcost.trn, gcost.car)2 -6.605724

NS(gcost.air, gcost.bus, gcost.trn, gcost.car)3 -3.298851

wait -0.097368

income -0.025886

log(mu[,3]/mu[,4])

(Intercept) 4.392911

NS(gcost.air, gcost.bus, gcost.trn, gcost.car)1 -2.474438

NS(gcost.air, gcost.bus, gcost.trn, gcost.car)2 -6.605724

NS(gcost.air, gcost.bus, gcost.trn, gcost.car)3 -3.298851

wait -0.097368

income -0.025886



14.3 On the Conditional Logit Model 65

60 80 100 120 140 160 180 200

−2

−1

0

1

2

3

gcost

F
itt

ed
 s

m
oo

th

Fig. 14.1 Estimated component function with the xij facility. The function is not ‘correct’ for

the reason explained in the text.

The estimated component function does not display properly when

> plot(as(tfit2, "vgam"), se = TRUE, lcol = "orange", scol = "blue",

which.term = 1, xlab = "gcost", ylab = "Fitted smooth",

noxmean = TRUE)

is used (Figure 14.1) because the term in the model’s formula is the difference
of two function values, not the function itself. That is, when the "vgam" plotting
methods function is used it operates on the difference of the function values rather
than the function itself.

One needs to do some processing in order to see what the function really looks
like. Here is some quick-and-dirty code to plot the estimated function. It is not
exactly generalizable, but it gives the idea on it can be done.

> X.lm <- model.matrix(tfit2, type = "lm")

> ooo <- with(TravelMode2, sort.list(gcost.air))

> TravelMode3 <- TravelMode2[ooo, ]

Then

> X.vlm <- model.matrix(tfit2, type = "vlm")

> ind.start <-

which(colnames(X.vlm) == "NS(gcost.air, gcost.bus, gcost.trn, gcost.car)1")

> ind.stop <- # This is rather manual

which(colnames(X.vlm) == "NS(gcost.air, gcost.bus, gcost.trn, gcost.car)3")

> ind2 <- ind.start:ind.stop

> X.pred <-

model.matrix( ~ -1 + NS(gcost.air, gcost.trn, gcost.bus, gcost.car),

data = TravelMode2)

> # Sort wrt the covariate, so that lines() effectively works

> X.pred <- X.pred[ooo, ]

> # For checking purposes

> fv <- X.pred %*% coef(tfit2)[ind2]

> plot(fv ~ gcost.air, data = TravelMode3, type = "l", col = "blue",

ylab = "Smooth function", xlab = "gcost")

> with(TravelMode3, rug(gcost.air))
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Fig. 14.2 Estimated component function with the xij facility. The (uncentred) function is
‘correct’. The bands are pointwise ±2 SEs about the estimate.

yields Figure 14.2. Actually, the figure includes pointwise ±2 SE bands, and this
is left as an exercise to the reader. The smooth function does seem to confirm that
the function is linear. The negative slope agrees with intuition because if the cost
of alternatives to car are more expensive than the cost by car then the alternatives
become less likely to be chosen. In conclusion it is argued that Figure 14.2 is
superior to Figure 3.1.

14.4 Derivatives of the Multinomial Logit Model

Using the multinomial logit model as an example, we now illustrate how to obtain
derivatives such as ∂`i/∂ηij and ∂`i/∂β

∗T
j .

Firstly, note that the individual `i values can be obtained by calling
logLik(..., summation = FALSE). For example,

> pneumo <- transform(pneumo, let = log(exposure.time))

> fit <- vglm(cbind(normal, mild, severe) ~ let, multinomial, pneumo)

> logLik(fit, summation = FALSE)

1 2 3 4 5 6 7 8

-0.71306 -2.34168 -3.91040 -4.02642 -4.01892 -4.05910 -3.50547 -2.67549

Now to get ∂`i/∂β
∗T
j , consider the following code snippet.

> mu <- predict(fit, type = "response")

> w <- weights(fit, type = "prior") # A 1-column matrix

> w <- as.vector(w) # Convert into a vector

> extra <- fit@extra

>

> # Choose which eta here

> jay <- 2 # Any value from the set 1:M where M == npred(fit)

> jay <- 1 # Any value from the set 1:M where M == npred(fit)

>

> y <- depvar(fit)
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> dl.deta <- eval(fit@family@deriv) # Needs "y", "w", "extra", etc.

>

> deta.dbetaj <-

vlm2lm.model.matrix(model.matrix(fit, type = "vlm"),

Hlist = constraints(fit),

which.linpred = jay)

>

> (dl.dbetaj <- dl.deta[, jay] * deta.dbetaj)

(Intercept):1 let:1

1:1 0.710472 1.24891

2:1 0.619607 1.67793

3:1 -2.502267 -7.67709

4:1 -0.929622 -3.08094

5:1 -0.608315 -2.13613

6:1 2.728082 10.02925

7:1 -0.078339 -0.29993

8:1 0.060382 0.23800

> colSums(dl.dbetaj) # For checking purposes; should be all 0s

(Intercept):1 let:1

6.4459e-11 1.5420e-10

Certain variables such as y, extra, mu need to be assigned before the @deriv

slot is evaluated. The function vlm2lm.model.matrix() chooses a subset of the
big model matrix XVLM depending on the value of the argument which.linpred

(which specifies j). The matrix deta.betaj is therefore a subset of XVLM. The
matrix dl.deta is n ×M . The chain rule is used to obtain the derivatives with
respect to the β∗(j)ks.

14.5 A Constrained Multinomial Logit Model

Suppose we want to constrain the probabilities of a multinomial logit model to
be bounded. How might this be done? The answer is that constraint matrices and
offsets can be combined. Suppose that 0 < pj < pmax is desired for all j = 1, . . . ,M .

The solution presented here only applies to one value of j rather than them all.
However, this disadvantage can be weakened by choosing j to be level correspond-
ing to the highest fitted value.

The formulas to use are

ω = log

(
1

pj,max
− 1

)
− log(M − 1), (14.8)

Ω = ω ·
(
eTj ⊗ 1n

)
, (14.9)

Hk = 1M , k = 1, . . . , p, (14.10)

so that 0 < pj < pmax. It can be seen that there is a parallelism assumption applied
to all the ηj , and that the matrix of offsets, Ω, has all columns equal to ω1n except
for the jth column, which is a column of 0s. The justification for (14.8)–(14.10) is
that

pj =
eηj

eηj [(M − 1) eω + 1] + 1
,
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and letting η →∞ leads to

pj →
1

(M − 1) eω + 1

which can be solved for ω. However, one consequence is

ps →
eω

(M − 1) eω + 1

as η →∞ which can be undesirable (s 6= j).
As an illustration, for example, for pmax = 0.8 then some values of ω are

> omega <- function(M = 1) log(1 / 0.8 - 1) + log(M-1)

> c(omega(2), omega(3), omega(4))

[1] -1.38629 -0.69315 -0.28768

Here is the above illustrated using the pneumo data set.

> data("pneumo")

> pneumo <- transform(pneumo, let = log(exposure.time))

> my0 <- rep( 0.0 , nrow(pneumo))

> M <- 2

> myoffset <- rep(omega(M), nrow(pneumo))

> fit1 <- vglm(cbind(normal, mild, severe) ~

offset(cbind(my0, myoffset)) + let,

multinomial(parallel = TRUE), data = pneumo)

> coef(fit1, matrix = TRUE)

log(mu[,1]/mu[,3]) log(mu[,2]/mu[,3])

(Intercept) 10.7091 10.7091

let -2.6935 -2.6935

> par(mfrow = c(1, 1))

> matplot(with(pneumo, let), fitted(fit1), type = "b",

ylab = "Fitted value", col = 1:3, las = 1,

xlab = "Log exposure time", main = "")

This produces Fig. 14.3. The maximum probability allowed is about 80% whereas
it is almost 100% in the constrained model (cf. Fig. 14.3(b)). The undesirable
feature here is that p2 is much larger than its unconstrained value (0.2 versus
almost 0).

14.5.1 A Variant Solution

Another possible solution is as follows.
The formulas to use are

ω = logit pj,max + log(M − 1), (14.11)

Ω = ω ·
(
1TM ⊗ 1n

)
, (14.12)

Hk = 1M , k = 1, . . . , p, (14.13)
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Fig. 14.3 Constraining the probabilities by an upper bound.

so that 0 < pj < pmax. As before, there is a parallelism assumption applied to all
the ηj , and that the matrix of offsets, Ω, has all columns equal to 0 except for
the jth column, which is ω1n. The justification for (14.11)–(14.13) is that

pj =
eω+ηj

eηj [M − 1 + eω] + 1
,

and letting η →∞ leads to

pj →
eω

M − 1 + eω

which can be solved for ω. However, one consequence is

ps →
1

M − 1 + eω

as η →∞ which can be undesirable (s 6= j).
As an illustration, for example, for pmax = 0.8 then some values of ω are

> omega2 <- function(M = 1) logitlink(0.8) + log(M-1)

> c(omega2(2), omega2(3), omega2(4))

[1] 1.3863 2.0794 2.4849

Here is the above illustrated using the pneumo data set.

> data("pneumo")

> pneumo <- transform(pneumo, let = log(exposure.time))

> my0 <- rep( 0.0 , nrow(pneumo))

> M <- 2

> myoffset <- rep(omega2(M), nrow(pneumo))

> fit2 <- vglm(cbind(normal, mild, severe) ~

offset(cbind(myoffset, my0)) + let,

multinomial(parallel = TRUE), data = pneumo)

> coef(fit2, matrix = TRUE)

log(mu[,1]/mu[,3]) log(mu[,2]/mu[,3])
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Fig. 14.4 Constraining the probabilities by an upper bound—using a variant method.

(Intercept) 9.3228 9.3228

let -2.6935 -2.6935

> par(mfrow = c(1, 1))

> matplot(with(pneumo, let), fitted(fit2), type = "b",

ylab = "Fitted value", col = 1:3, las = 1,

xlab = "Log exposure time", main = "")

This produces Fig. 14.4. The maximum probability allowed is about 80% whereas
it is almost 100% in the constrained model (cf. Fig. 14.3(b)). The undesirable
feature here is that p2 is much larger than its unconstrained value (0.2 versus
almost 0).
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Bibliographic notes

Hensher et al. (2015) is a large applied book on choice modelling, albeit based
on the software Nlogit. Fullerton and Xu (2016) describe a typology of categorical
models involving parallelism and reduced-rank regression. Agresti (2019) is an
introductory book on categorical data analysis and Fagerland et al. (2017) looks
at the analysis of contingency tables.

Package gofcat computes a several goodness-of-fit measures for categorical re-
sponse models. They include the Brant, Hosmer-Lemeshow, and Lipsitz tests, as
well as the LRT. See Ugba (2022).

Package EffectStars2 plots the estimated coefficients in the form of a star-like
graphic according to the different groups (Tutz and Schauberger, 2013).
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Exercises

In general, any form of

exercise, if pursued con-

tinuously, will help train

us in perseverance.

—Mao Zedong

Ex. 14.1. To compare two groups, a useful summary refers to latent variables y∗1
and y∗2 that underlie responses for the two groups. Suppose these are independent,
made at any particular setting of the explanatory variables. The summary measure
is Pr(Y ∗2 > Y ∗1 ). When the indicator variable in the model takes value 0 for group 1

and 1 for group 2 and has estimated coefficient β̂ in a propodds() model show
that the probability can be estimated by [Agresti and Kateri (2017)]

P̂r(Y ∗2 > Y ∗1 ) =
exp(β̂/

√
2)

1 + exp(β̂/
√

2)
. (14.14)

Ex. 14.2. Obtain the SE bands of Figure 14.2.



Chapter 15

Complements: Quantile and Expectile
Regression

15.1 Introduction

This chapter looks at some more topics related to quantile and expectile regression,
especially as related to the VGAM package.

15.1.1 Fitted Values of the LMS-BCN Model

Given an lms.bcn() model, extracting different quantiles from the quantiles used
when first fitting the model can be obtained easily. However, one has to be careful
whether the object is of class "vgam" or "vglm". Below, we obtain the 10% and 80%
quantiles of a 60 year old, noting that the default fitted quantiles are 25%, 50%
and 75%.

> fit <- vgam(BMI ~ s(age, df = c(4, 2)), trace = FALSE,

lms.bcn(zero=1), data = bmi.nz)

>

> # Correct for "vgam" objects, but not very elegant

> predict(fit, newdata = data.frame(age = 60))

lambda mu loglink(sigma)

1 -0.65896 27.009 -1.8427

> # Correct for "vgam" objects, but not very elegant

> fit@family@linkinv(eta = predict(fit, data.frame(age = 60)),

extra = list(percentiles = c(10, 80)))

10% 80%

1 22.324 31.052

Note that predict() gives an incorrect answer when a "vgam" object is coerced
into a "vglm" object. This is because "vgam" objects have each ηj made up of the
sum of parametric and nonparametric (linear and nonlinear) components, and the
latter is ignored upon the conversion.

> # Incorrect for "vgam" objects

> predict(as(fit, "vglm"), newdata = data.frame(age = 60))

lambda mu loglink(sigma)

73
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1 -0.65896 26.371 -1.8313

> # Incorrect for "vgam" objects

> predict(as(fit, "vglm"), percentiles = c(10, 50),

newdata = data.frame(age = 60), type = "response")

10% 50%

1 21.752 26.371

Here is an example involving regression splines.

> fit2 <- vglm(BMI ~ bs(age, df = 4), trace = FALSE,

lms.bcn(zero = c(1, 3)), data = bmi.nz)

>

> # Correct for "vglm" objects, but not very elegant

> predict(fit2, newdata = data.frame(age = 60))

lambda mu loglink(sigma)

1 -0.64529 27.085 -1.8439

> # Correct for "vglm" objects

> predict(fit2, percentiles = c(10, 80),

newdata = data.frame(age = 60), type = "response")

10% 80%

1 22.386 31.13

Incidentally, this is for people from the original fit:

> head(fitted(fit2, percentiles = c(10, 80)), 3)

10% 80%

[1,] 21.048 29.270

[2,] 21.716 30.198

[3,] 22.031 30.637

> head(fitted(fit2), 3) # Default quantiles

25% 50% 75%

1 22.969 25.466 28.443

2 23.698 26.274 29.345

3 24.042 26.656 29.772

15.1.2 Qlink Link Functions for Parametric QRl

In the usual quantile regression setting the distribution of the response given the
explanatory variables is unspecified. In Miranda-Soberanis and Yee (2019) the
distribution is specified and they introduce new link functions to directly model
specified quantiles of seven 1–parameter continuous distributions. They transform
certain prespecified quantiles to become linear or additive predictors. This is an
example of parametric quantile regression. The quantile crossing problem can be
avoided by enforcing parallelism constraint matrices. The new link functions are
in VGAMextra 0.0-2 or higher. The distributions have support on (0,∞), (0, 1)
or (−∞,∞), therefore there are three links currently implemented and they are
ητ = log ξτ , logit ξτ and ξτ .
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The names of the link functions end in "Qlink", and one needs Q.reg() to pre-
process the response. The distributions currently implemented include benini1(),
exponential(), gamma1(), maxwell(), rayleigh(). topple(), normal1sdff().
The last one resides in VGAMextra. Some of these distributions have ηj which
is parallel with respect to x2, . . . , xd so that τj only affects the intercept of ηj .
Regardless, setting parallel = FALSE ∼ 1 for all the models means that the lin-
ear/additive predictors are parallel with respect to x2, . . . , xd, hence there is no
quantile crossing problem.

Here is a simple example.

> set.seed(1)

> maxdata <- data.frame(x2 = sort(runif(n <- 200))) # Sorted for plotting

> ratefun <- function(x) exp(2 - 6 * sin(2 * x - 0.2) / (x + 0.5)^2)

> # Generate the data:

> maxdata <- transform(maxdata, y = rmaxwell(n, rate = ratefun(x2)))

> my.tau <- c(0.25, 0.50, 0.75) # Use these quantiles

> library("VGAMextra")

> mydof <- 4 # Effective degrees of freedom of the smoothing spline

> fit1 <-

vgam(Q.reg(y, pvector = my.tau) ~ s(x2, df = mydof), data = maxdata,

maxwell(link = maxwellQlink(p = my.tau),

type.fitted = "Qlink"))

> plot(y ~ x2, maxdata, main = "", xlab = expression(x[2]), las = 1,

ylab = "y")

> with(maxdata, matlines(x2, fitted(fit1), col = "blue", lwd = 1.5,

lty = 1))

This gives Figure 15.1. The empirical proportions are

> 100 * colMeans(depvar(fit1, drop = TRUE) < fitted(fit1))

[1] 26.0 50.0 73.5

which agree well with my.tau.
If fit is a "Qlink"-type object then fitted(fit) and predict(fit, type =

"response") are the same.

Bibliographic notes

A recent book on quantile regression is Koenker et al. (2018). Some further infor-
mation about expectiles can be found in Schnabel and Eilers (2009), De Rossi and
Harvey (2009), Schnabel (2011).
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Fig. 15.1 Simulated Maxwell data including the fitted quantile functions from
fit1.
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Exercises

Ex. 15.1. Parallelism

(a) For exponential() using expQlink() show that the ηj are parallel. Hint: for
Y ∼ exponential(λ), with λ > 0 a rate parameter, the density and CDF are
given by f(y;λ) = λ e−λy and F (y;λ) = 1− e−λy.

(b) For maxwell() using maxwellQlink() show that the ηj are parallel. Hint: this

distribution has density f(y; a) =
√

2/π a3/2 y2 exp(−a y2/2) and CDF

F (y; a) =

√
2

a
· qgamma(τ, 1.5).

(c) For rayleigh() using rayleighQlink() are the ηj are parallel? Show your

working. Hint: this distribution has CDF F (y; b) = b
√
−2 log(1− τ).

(d) For benini1() using benini1Qlink() are the ηj are parallel? Show your work-
ing. Hint: this distribution has CDF

F (y; s) = y0 · exp

(√
− log(1− τ)

s

)
,

where y0 is known (given) and (y0,∞) is the support of the distribution.
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Complements: Extremes

16.1 Using Confidence Intervals Based on Profile
Likelihoods

Section 3.2 describes confint() based on profile likelihoods as an alternative to
Wald intervals. Here, we mimic the GPD analysis given in Coles (2001, Sect. 4.4.1)
based on some rainfall data in south-west England during the 20th century. The
analysis is based on 152 exceedances of the the threshold value of 30.

Firstly let’s obtain an appropriate subset of the data in the form of a data
frame.

> data(rain, package = "ismev")

> mythresh <- 30

> rain30 <- data.frame(y = rain[rain > mythresh])

> summary(unlist(rain30)) # Only one variable here

Min. 1st Qu. Median Mean 3rd Qu. Max.

30.2 32.0 35.3 39.1 42.0 86.6

> dim(rain30)

[1] 152 1

To keep things simple, let’s use identity links to estimate the two parameters.

> gpdfit <- vglm(y ~ 1, gpd(threshold = mythresh, lscale = "identitylink",

lshape = "identitylink"),

crit = "coef", data = rain30)

> coef(gpdfit, matrix = TRUE)

scale shape

(Intercept) 7.4403 0.1845

The MLEs agree. As for the SEs, there is a slight difference, possibly because Coles
(2001) might use OIMs instead of EIMs:

> round(vcov(gpdfit), dig = 4)

(Intercept):1 (Intercept):2

(Intercept):1 0.8628 -0.0580

(Intercept):2 -0.0580 0.0092

Now to compute approximate 95% CIs for the shape parameter ξ, these are

77
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> confint(gpdfit, "(Intercept):2", method = "wald") # Cf. [-0.014, 0.383]

2.5 % 97.5 %

(Intercept):2 -0.0038056 0.3728

> confint(gpdfit, "(Intercept):2", method = "profile") # Cf. [0.019, 0.418]

2.5 % 97.5 %

0.01362 0.41545

There is some discrepancy in both types of intervals with Coles (2001), nevertheless
this is not major. Regardless, it appears that 0 < ξ.

Bibliographic Notes

Belzile et al. (2022) is a recent review of EVA software with a focus on the numerical
challenges involved.



Chapter 17

Complements: Generally Altered,
Inflated, Truncated and Deflated
Regression

This chapter is restricted to count responses; GAITD regression for continuous Y
is currently under development and is not yet described here.

17.1 The ZMP

This section highlights the fact that some of the earliest VGAM family functions
can be used to fit the zero-modified (or maybe the zero-deflated) variant even
though it seemingly only fits the zero-inflated version. We will use the Poisson as
the parent distribution here but the idea can apply to others such as the NBD.

The zero-modified Poisson (ZMP) distribution may be written

fµ(y) = ν fπ(y;θπ) + (1− ν) · I(y = 0), y = 0, 1, . . . , (17.1)

where fπ(y) is the usual Poisson PMF. Now 0 ≤ ν ≤ 1 + 1/[1− fπ(0)] means that
it is a combination of the ZIP and zero-deflated Poisson (ZDP). In VGAM the key
is to set the link function to be something like identitylink or extlogitlink()
with argument max set manually to some suitable value. Some notes:

� The PMF (17.1) has a term ν fπ(y) which is better than using φ fπ(y) because,
even though φ = 1 − ν, one doesn’t want φ fπ(y) < 0 so this implies 0 ≤ φ is
needed. That is, for zipoisson(), the PMF written as

fι(y) = (1− φ) fπ(y;θπ) + φ · I(y = 0), y = 0, 1, . . . , (17.2)

has the disadvantage that it must have 1 − φ ≥ 0 in order to avoid negative
probabilities when y 6= 0. Thus using (17.1) is better than (17.2).

� Care is needed when fitting the ZMP using zipoisson() and zipoissonff()

because problems might occur when iterations get close to or go past the
boundary of the parameter space, especially when there are covariates. Re-
garding the previous bullet point, (17.1) has ν matching with the quan-
tity/argument onempstr0; hence it can be argued that maybe zipoissonff()

is more suitable than zipoisson().
� The ZDP can be written

fδ(y) = (1 + ψ) fπ(y;θπ)− ψ · I(y = 0), y = 0, 1, . . . , (17.3)
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where 0 ≤ ψ ≤ fπ(0)/[1− fπ(0)]. That is, ν = 1 + ψ.
� Summarizing, and writing “*” for the parent or base distribution, the ZM*

contains the ZI*, ZD* and ZT* as special cases. In fact, one can think of these
three models as nonoverlapping and their combination is the ZM*. Specifically,

– ν = 0 is a degenerate distribution at 0;
– ν ∈ (0, 1) is the ZI*;
– ν = 1 is the usual parent distribution *;
– ν ∈ (1, 1/[1− fπ(0)]) is the ZD*; and
– ν = 1/[1− fπ(0)] is the ZT*.

� In the GAITD regression method below, the user must specify the direction:
either inflation or deflation. Hence strictly speaking, one cannot fit the ‘mod-
ified’ model because this combines both operators into one operator. Instead,
one can fit the equivalent of the ‘modified’ model by manually supplying the
direction. And in the case of truncation, one can specify values of a set T of
truncated values so that this requires manual specification too.

Here is a numerical example involving simulated data illustrating zipoissonff()

fitting the ZDP.

> set.seed(1)

> nn <- 1000; lambda <- 1

> (deflat.limit <- -1 / expm1(lambda)) # ZDP boundary

[1] -0.58198

> pstr0 <- deflat.limit / 2 # Moderate deflation

> 1 - pstr0 # \nu; this is estimated below; aka onempstr0

[1] 1.291

> deflatpoisdata <-

data.frame(y1 = rzipois(nn, lambda, pstr0 = pstr0))

> zdpfit1 <- vglm(y1 ~ 1, data = deflatpoisdata,

zipoissonff(lonempstr0 = "identitylink"))

> coef(zdpfit1, matrix = TRUE)

loglink(lambda) onempstr0

(Intercept) 0.023934 1.2732

> Coef(zdpfit1)

lambda onempstr0

1.0242 1.2732

> coef(summary(zdpfit1))

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 0.023934 0.042419 0.56421 5.7261e-01

(Intercept):2 1.273161 0.036413 34.96461 7.7669e-268

Now change the link function to extlogitlink():

> zdpfit2 <-

vglm(y1 ~ 1, data = deflatpoisdata,

zipoissonff(lonempstr0 = "extlogitlink(max = 1.4)"))

> coef(zdpfit2, matrix = TRUE)

loglink(lambda) extlogitlink(onempstr0, min = 0, max = 1.4)
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(Intercept) 0.023934 2.3063

> Coef(zdpfit2)

lambda onempstr0

1.0242 1.2732

> coef(summary(zdpfit2))

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 0.023934 0.042419 0.56421 5.7261e-01

(Intercept):2 2.306340 0.315648 7.30669 2.7381e-13

Both fits have identical estimates of ν and λ.

17.2 Heaped and Seeped Data

A very common aberration in retrospective self-reported survey data is digit pref-
erence (heaping) whereby multiples of 10 or 5 upon rounding are measured in
excess, creating spikes in spikeplots. Handling this problem requires great flexi-
bility. This section serves only as motivation for a new technique called GAITD
regression described in Section 17.3. GAITD regression applies to data not neces-
sarily contaminated by measurement error, hence it is only one possible cause of
such data.

17.3 GAITD Regression

VGAM 1.1-6 and higher has functions which implement GAITD regression.
GAITD regression is an attempt to generalize four popular models most com-

monly based on the Poisson distribution and known by the acronyms ZIP, ZAP,
ZTP and ZDP: the zero-inflated, zero-altered, zero-truncated (positive) and zero-
deflated Poisson respectively. Over the past two decades they have gained wide
acceptance and popularity among practitioners with count responses, e.g., Kleiber
and Zeileis (2008), Zuur et al. (2012), Cameron and Trivedi (2013), Agresti (2015).
Much of this has been driven by the realization that excess 0s are commonly en-
countered in real-life data, and to a lesser extent, a deficiency or the impossibility
of recording 0 values in other types of data.

All four types of operators (“A”, “I”, “T” and “D”) have found rich applications
in both Poisson and binomial distribution forms. The ZIP has been attributed to
Lambert (1992), and the ZAP is often described as a hurdle model. In capture–
recapture experiments the absence of 0s leads to conditional models (e.g., Otis
et al., 1978; Yee et al., 2015) such as the positive Bernoulli distribution or zero-
truncated binomial (ZTB); occupancy models (e.g., MacKenzie et al., 2002) also
make use of them.

Let R be the support of the parent (base) distribution, e.g., {0, 1, . . .} for the
Poisson. GAITD regression extends previous work such as the above in three
directions:
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(I) Any subset of the support can be altered, inflated, deflated or truncated,
cf. treating only the singleton {0} as special. The first three are denoted A
and I and D with finite cardinality. The truncation set T may be innumerable
so it is merely a proper subset of R.

(II) Rather than allowing only one of A, I T and D, the four operators are
combined into a single model and are allowed to operate concurrently. This
confers greater versatility and a holistic approach. The A, I, T and D are
mutually disjoint.

(III) Utilizing (I) and (II) on A, I and D, parametric and nonparametric forms
are spawned, hence there are 7 types of special values. These are further
combined into a single super-mixture model, called the GAITD combo for
modesty.

(IV) Although we develop (I)–(II) mainly for 1-parameter count parent distribu-
tions (Poisson, logarithmic and zeta) our work applies to other distributions
such as the 2-parameter negative binomial and not necessarily discrete.

These directions allow an important unification of the four operators into a single
model. A finite mixture distribution approach is taken for this.

Applications that utilize (I) can arise from many situations. For example,
generally-truncated count distributions can arise from a surprising range of sce-
narios and may be justified when certain support values have no possibility of oc-
curring, for example, tetraphobia in East Asian culture and triskaidekaphobia in
Western culture that create structural absences in certain sampling units. Build-
ings that omit the 4th floor and public passenger seating that omit row 13 are
everyday examples.

Bibliographic notes

This chapter summarizes details from Yee and Ma (2024) and Yee et al. (2025). It
is anticipated that content here will be put into the second edition of Yee (2015)
to replace Chapter 17 on ZI-, ZA- and ZT-distributions.

An overview of ZI-models with particular emphasis on the ZIP is given in Wagh
and Kamalja (2018).

Exercises

. . . the East is rising and

the West is declining. . .

—Xi Jinping

Ex. 17.1. An alternative parameterization of the zero-inflated Poisson (ZIP) is

Pr(Y = 0) = p, (17.4)

Pr(Y = y) =
1− p

1− e−λ
· e
−λλy

y!
, y = 1, 2, . . . . (17.5)

(a) Derive the expected information matrix.
(b) Based on (17.4)–(17.5), write the form of the PMF for a 0-inflated 1-parameter

count distribution in general. How does its expected information matrix change?
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Ex. 17.2. By carefully choosing special values and probabilities, use the soft-
ware to spikeplot a GAITD count distribution that is bimodal. Then do the same
for trimodality and up to 7 modes.





Chapter 18

Complements: On VGAM Family Functions

18.1 Character Input for the zero Argument

VGAM 1.0-1 and higher allows the zero argument to have character input. For
example,

> set.seed(123); n <- 1000

> ldata <- data.frame(x2 = runif(n))

> ldata <- transform(ldata, y1 = rlogis(n, loc = 0+5*x2, scale = exp(2)))

> ldata <- transform(ldata, y2 = rlogis(n, loc = 0+5*x2, scale = exp(0+1*x2)))

> ldata <- transform(ldata, w1 = runif(n))

> ldata <- transform(ldata, w2 = runif(n))

> fit2 <- vglm(cbind(y1, y2) ~ x2,

# logistic(zero = "location1"),

# logistic(zero = "location2"),

# logistic(zero = "location"), # All "location" parameters

# logistic(zero = "scale1"),

# logistic(zero = "scale2"),

# logistic(zero = "scale*"), # Wildcards do not work

logistic(zero = c("location", "scale2")),

# logistic(zero = c("LOCAT", "scale2")),

# logistic(zero = c("LOCAT")),

# trace = TRUE,

# weights = cbind(w1, w2),

weights = w1,

data = ldata)

> coef(fit2, matrix = TRUE)

location1 loglink(scale1) location2 loglink(scale2)

(Intercept) 2.7247 1.90498 2.2067 0.67507

x2 0.0000 0.15383 0.0000 0.00000

In the above, all the various zero examples work. Those with LOCAT issue
a warning that that value is unmatched. Importantly, the parameter names
are c("location1", "scale1", "location2", "scale2") because there are 2
responses. Note that zero does not accept wildcards (cf. Linux operating system),
e.g., "location*" does not work. However, "location" does work; it means that
all location parameters are intercept-only.

Yee (2015) described zero for only numerical input. Allowing character input is
particularly important when the number of parameters cannot be determined with-
out having the actual data first. For example, with time series data, an ARMA(p, q)

85



86 18 Complements: On VGAM Family Functions

process might have parameters θ1, . . . , θp which should be intercept-only by de-
fault. Then specifying a numerical default value for zero would be too difficult
(there are the drift and scale parameters too). However, it is possible with the
character representation: zero = "theta" would achieve this.

Here are some further notes.

1. Many VGAM family functions have had their zero default value converted to
the character representation—the advantage being that it is more readable.

2. It is not advised to mix numeric with character input, e.g., c("location1",
3) is transformed by R into c("location1", "3") which is probably not what
the user really intends.

3. When programming a VGAM family function that allows character input,
the variable predictors.names must be assigned correctly. This is done in
the initialize slot. For example,

> logistic()@initialize

expression({

temp5 <- w.y.check(w = w, y = y, ncol.w.max = Inf, ncol.y.max = Inf,

out.wy = TRUE, colsyperw = 1, maximize = TRUE)

w <- temp5$w

y <- temp5$y

ncoly <- ncol(y)

M1 <- 2

extra$ncoly <- ncoly

extra$M1 <- M1

M <- M1 * ncoly

mynames1 <- param.names("location", ncoly, skip1 = TRUE)

mynames2 <- param.names("scale", ncoly, skip1 = TRUE)

parameters.names <- c(mynames1, mynames2)[interleave.VGAM(M,

M1 = M1)]

predictors.names <- c(namesof(mynames1, "identitylink", earg = list(

theta = , inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE),

tag = FALSE), namesof(mynames2, "loglink", earg = list(

theta = , bvalue = NULL, inverse = FALSE, deriv = 0,

short = TRUE, tag = FALSE), tag = FALSE))[interleave.VGAM(M,

M1 = M1)]

if (!length(etastart)) {

if (1 == 1) {

locat.init <- y

scale.init <- sqrt(3) * apply(y, 2, sd)/pi

}

else {

locat.init <- scale.init <- NULL

for (ii in 1:ncoly) {

locat.init <- c(locat.init, median(rep(y[, ii],

w[, ii])))

scale.init <- c(scale.init, sqrt(3) * sum(w[,

ii] * (y[, ii] - locat.init[ii])^2)/(sum(w[,

ii]) * pi))

}

}

locat.init <- matrix(if (length(NULL))

NULL

else locat.init, n, ncoly, byrow = TRUE)

if ("identitylink" == "loglink")

locat.init <- abs(locat.init) + 0.001

scale.init <- matrix(if (length(NULL))
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NULL

else scale.init, n, ncoly, byrow = TRUE)

etastart <- cbind(theta2eta(locat.init, "identitylink",

earg = list(theta = , inverse = FALSE, deriv = 0,

short = TRUE, tag = FALSE)), theta2eta(scale.init,

"loglink", earg = list(theta = , bvalue = NULL, inverse = FALSE,

deriv = 0, short = TRUE, tag = FALSE)))[, interleave.VGAM(M,

M1 = M1)]

}

})

In the past, most family functions checked that zero, if it was not a NULL, was
numeric; this block of code should be commented out.

4. The zero argument also accepts "" and NA as alternatives to NULL (to mean
‘none’).

18.2 Link Functions

Calls of the form linkfun(θ, deriv = 2, inverse = TRUE) return the follow-
ing:

∂2θ

∂η2
= −

(
∂η

∂θ

)−3
∂2η

∂θ2
. (18.1)

This follows from the basic property

∂θ

∂η
=

(
∂η

∂θ

)−1
.

All link functions in VGAM have been converted to give the output as summarized
in Table 18.1.

18.3 Writing Some Methods Functions

The generic function summary(), when applied to a "vglm" object, calls the meth-
ods function summaryvglm(), which computes quantities such as the SEs and Wald
statistics, then these are printed by the methods function show.summary.vglm().
The output that appears from this is the same for all 150+ VGAM family functions.
However, for many types of models, it would be useful for certain model-specific
quantities to be printed out in the summary() too. Here are some examples.

� In a binom2.or(zero = 3) model the estimated odds ratio is usually of par-
ticular interest and should be printed out.

� For a proportional odds model, exp{β∗(1)k} is the odds ratio for Pr(Y ≤ j), from
a change in xk to xk+1, keeping all other variables fixed. Hence exponentiating
the regression coefficients is useful to some practitioners.

� For the N2 distribution, the default is to model the correlation parameter ρ
using a "rhobit" link and as intercept-only. If so, then it is informative to
print out ρ̂.



88 18 Complements: On VGAM Family Functions

Table 18.1 Calls to a link function in VGAM, called linkfun() here. Notes: (1) Cases 1–2

are inverses, cases 3–4 are reciprocals, cases 5–6 are not reciprocals but are related by (18.1).
(2) Some big changes occurred for VGAM version 0.9-9 (2015-07); previous to that cases 3–4 were

switched, and cases 5–6 used to be reciprocals of each other (a bug). (3) Case 2 is the only one

where the argument theta is actually η.

Case Call Returns Old case

1. linkfun(θ) η = g(θ)

2. linkfun(η, inverse = TRUE) θ = g−1(η)

3. linkfun(θ, deriv = 1)
dη

dθ
4.

4. linkfun(θ, deriv = 1, inverse = TRUE)
dθ

dη
3.

5. linkfun(θ, deriv = 2)
d2η

dθ2

6. linkfun(θ, deriv = 2, inverse = TRUE)
d2θ

dη2
5.

7. linkfun(θ, deriv = 3)
d3η

dθ3

8. linkfun(θ, deriv = 3, inverse = TRUE)
d3θ

dη3

� In capture–recapture models such as posbernoulli.tb() the population size
estimate N̂ and its SE is often the final goal of the analysis.

Fortunately, it is also possible for programmers to write methods functions that
print extra output for functions such as summary(). This section describes how this
may be done. We take as two examples the functions summary() and margeff(),
when applied to regression models for categorical responses. We have

> multinomial()@vfamily

[1] "multinomial" "VGAMcategorical"

> acat()@vfamily

[1] "acat" "VGAMordinal" "VGAMcategorical"

> cratio()@vfamily

[1] "cratio" "VGAMordinal" "VGAMcategorical"

> sratio()@vfamily

[1] "sratio" "VGAMordinal" "VGAMcategorical"

> cumulative()@vfamily

[1] "cumulative" "VGAMordinal" "VGAMcategorical"

which is FYI only. What is really implemented is
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setClass("VGAMcategorical", contains = "vglmff")

setClass("VGAMordinal", contains = "VGAMcategorical")

setClass("multinomial", contains = "VGAMcategorical")

setClass("acat", contains = "VGAMordinal")

setClass("cumulative", contains = "VGAMordinal")

setClass("cratio", contains = "VGAMordinal")

setClass("sratio", contains = "VGAMordinal")

This establishes the line of inheritance. These 4 ordinal models and 1 nominal
model use S4 dispatch methods such as the ones below to exploit these relation-
ships. We’ll see that the class of the VGAMff argument is the key to the line of
inheritance and not the class of the object argument.

18.3.1 Marginal Effects

To compute the marginal effects of several regression models, we have

> margeff

function(object, subset = NULL, ...) {

try.this <- findFirstMethod("margeffS4VGAM",

object@family@vfamily)

if (length(try.this)) {

margeffS4VGAM(object = object,

subset = subset,

VGAMff = new(try.this),

...)

} else {

stop("Could not find a methods function for ",

"’margeffS4VGAM’ emanating ",

"from ’", object@family@vfamily[1], "’")

}

}

<bytecode: 0x55b78579a4a0>

<environment: namespace:VGAM>

The function findFirstMethod() looks at the model’s vfamily slot to see if there
is a methods function for computing the marginal effects. If so, then it starts off
by calling it. If no such methods function exists, then nothing happens, because it
is all optional.

Note that margeff() is not a generic function. The S4 OOP is done using
margeffS4VGAM(), which margeff() calls. The class of the argument VGAMff is
what the S4 dispatch operates on. Currently, the suffix “S4VGAM” is used to denote
a generic function that programmers can write methods functions for.

Then one should write, e.g.,

setMethod("margeffS4VGAM", signature(VGAMff = "multinomial"),

function(object, subset = NULL, VGAMff, ...) {
...

object <- callNextMethod(VGAMff = VGAMff, object = object,
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subset = subset, ...)

...

return(answer)

})

setMethod("margeffS4VGAM", signature(VGAMff = "VGAMcategorial"),

function(object, subset = NULL, VGAMff, ...) {
...

})

The call to callNextMethod() in the methods function for "multinomial" calls
the methods function for "VGAMcategorial"—this is the inheritance idea.

Another example is

setMethod("margeffS4VGAM", signature(VGAMff = "acat"),

function(object, subset = NULL, VGAMff, ...) {
object <- callNextMethod(VGAMff = VGAMff,

object = object,

subset = subset,

...)

...

return(answer)

})

setMethod("margeffS4VGAM", signature(VGAMff = "VGAMordinal"),

function(object, subset = NULL, VGAMff, ...) {
... # Compute hdot

object@post$hdot <- hdot

...

return(object)

})

Here, the methods function for "VGAMordinal" computes a quantity called hdot

and assigns it to the post slot—this quantity is used by several ordinal regression
models such as "acat".

18.3.2 Show

The methods functions show.vglm() and show.vgam() are called whenever the
name of an S4 object of class "vglm" or "vgam" is typed in at the command
prompt. (This is similar to the print() generic being applied to an S3 object).
Sometimes it is useful to print a little more about the fitted model than the usual
output produced by show(). Fortunately, show.vglm() and show.vgam() enable
this to occur. As a simple example, consider the following code.

setMethod("showvglmS4VGAM",

signature(VGAMff = "acat"),

function(object, VGAMff, ...) {
cat("\nThis is an adjacent categories model with",

1 + object@misc$M, "levels\n")
invisible(object)

})

setMethod("showvgamS4VGAM",
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signature(VGAMff = "acat"),

function(object, VGAMff, ...) {
cat("\nThis is an adjacent categories model with",

1 + object@misc$M, "levels\n")
invisible(object)

})

Thus we get, as an example,

> pneumo <- transform(pneumo, let = log(exposure.time))

> acatfit <- vglm(cbind(normal, mild, severe) ~ let, acat, data = pneumo)

> acatfit

Call:

vglm(formula = cbind(normal, mild, severe) ~ let, family = acat,

data = pneumo)

Coefficients:

(Intercept):1 (Intercept):2 let:1 let:2

-8.93603 -3.03906 2.16537 0.90209

Degrees of Freedom: 16 Total; 12 Residual

Residual deviance: 5.3474

Log-likelihood: -25.251

This is an adjacent categories model with 3 levels

The reason this works is because the following code fragment appears at the end
of show.vglm():

try.this <- findFirstMethod("showvglmS4VGAM",

object@family@vfamily)

if (length(try.this)) {
showvglmS4VGAM(object = object,

VGAMff = new(try.this))

}

The same holds for show.vgam() too.

18.3.3 Summary

The summary() generic is slightly more complicated than margeff() be-
cause it computes quantities and returns it as an object of a different class,
e.g., "summary.vglm", and then is printed by another methods function, e.g.,
show.summary.vglm(). The summary() generic for "vglm" objects searches for
any methods function for "summaryvglmS4VGAM" matched on a value from the ob-
ject’s vfamily slot. If any values exist, then the first value is chosen as the starting
point, and often this is the name of the VGAM family function itself.

setMethod("summaryvglmS4VGAM",

signature(VGAMff = "cumulative"),

function(object, VGAMff, ...) {
object@post <- callNextMethod(VGAMff = VGAMff,
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object = object, ...)

object@post$reverse <- object@misc$reverse

object@post

})

setMethod("showsummaryvglmS4VGAM",

signature(VGAMff = "cumulative"),

function(object, VGAMff, ...) {
if (object@post$reverse)

cat("Reversed\n") else cat("Not reversed\n")
cat("\n")
})

It is recommended that all quantities computed after estimation be placed in the
object’s post slot, which is a list.

Here’s an example.

> coalminers <- transform(coalminers, Age = (age - 42) / 5)

> coalfit <- vglm(cbind(nBnW, nBW, BnW, BW) ~ Age,

binom2.or, data = coalminers, trace = TRUE)

VGLM linear loop 1 : deviance = 50.65692

VGLM linear loop 2 : deviance = 50.56779

VGLM linear loop 3 : deviance = 50.56779

> summary(coalfit, presid = FALSE)

Call:

vglm(formula = cbind(nBnW, nBW, BnW, BW) ~ Age, family = binom2.or,

data = coalminers, trace = TRUE)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 -2.26244 0.02983 -75.8 <2e-16 ***

(Intercept):2 -1.48903 0.02057 -72.4 <2e-16 ***

(Intercept):3 2.83253 0.05598 50.6 <2e-16 ***

Age:1 0.51470 0.01198 43.0 <2e-16 ***

Age:2 0.32672 0.00887 36.8 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Names of linear predictors: logitlink(mu1), logitlink(mu2), loglink(oratio)

Residual deviance: 50.568 on 22 degrees of freedom

Log-likelihood: -110.62 on 22 degrees of freedom

Number of Fisher scoring iterations: 3

No Hauck-Donner effect found in any of the estimates

Odds ratio: 16.988

When η3 is intercept-only, the odds ratio is computed and printed at the bottom
of the summary.

Another example is posbernoulli.tb(). Special cases of this model, such as
posbernoulli.b() and posbernoulli.t(), inherit from this model.
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18.3.4 Further Comments

The reader is reminded that all S4 methods ought to be documented in an .Rd file.
Any generic function that is already supported by VGAM can be found declared
in the NAMESPACE file and identified by the suffix “S4VGAM”.
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Table 18.2 Additional slots of a typical VGAM family object (of S4 class "vglmff"), and their

purposes. These have been introduced since VGAM 1.0-2.

Slot Type Purpose

@validparams function(eta, y,

extra = NULL)

Returns a single logical: whether all the pa-

rameters are within the parameter space or

an approximation to the parameter space.

@validfitted function(eta, y,

extra = NULL)

Returns a single logical: whether all the fitted
values are valid, e.g., are NAs allowed?

18.4 A New Slot or Two

VGAM family functions now have an additional slot or two. They are @validparams
and @validfitted. Their introduction was motivated by the glm() equivalent; the
purpose is to make sure that each IRLS iteration is a valid one, therefore makes
the estimation procedure more likely to avoid crashing and to converge. Cur-
rently @validparams appears in a few VGAM family functions while @validfitted
is undeveloped.

Table 18.2 summarizes these. Examples of their use include:

� negbinomial() and variants. For the NBD,

V (µ) = µ
(

1 +
µ

k

)
≈ µ when

µ

k
≈ 0,

so an artificial boundary of the parameter space is when the distribution is ‘too’
close to a Poisson (possibly the data may be also be underdispersed relative to
a Poisson distribution). Note that major overdispersion, as when k ≈ 0, is a
less frequent problem. Having the artificial boundary stops the estimate of k at
iteration a, k(a), from a floating point overflow.

� The support of the GEV and GPD in Table 16.1 depends on the value of the
shape parameter ξ.

� Some of the statistical size distributions tabulated in Table 12.14 have con-
straints such as −ap < 1 < aq.

When @validparams returns a FALSE then vglm.fit() will issue a warning and
invoke code to do half-stepping. The latter keeps the estimates within the param-
eter space.

The astute reader will notice that one of the arguments of the functions is y

despite the well-known result that the usual MLE regularity conditions do not
hold if the support of distribution depends on the parameters (Section A.1.2.2).
This is done for convenience—otherwise the response would have to be passed in
via the extra list.

Bibliographic notes

For R programming, Braun and Murdoch (2016) is the second edition of Braun
and Murdoch (2008).
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Exercises

The noblest exercise of

the mind within doors,

and most befitting a per-

son of quality, is study.

—William Ramsay

Ex. 18.1. Suppose one wants to implement linkfun(θ, deriv = 3, inverse

= TRUE). Show that would entail return the following:

∂3θ

∂η3
= 3

(
∂η

∂θ

)−5(
∂2η

∂θ2

)2
−
(
∂η

∂θ

)−4
∂3η

∂θ3
. (18.2)

Hint: (18.1) should help.





Appendix A

Background Material

A.1 A Bit More on Inference

A.1.1 Likelihood Ratio Statistic

Here are a few more details to fill in some missing gaps in Section A.1.4.2.
For simplicity, suppose that θ is a single parameter and that there is a single

observation. Firstly, to show that

θ̂ ∼ N(θ, [IO1(θ̂)]−1), (A.1)

use the Taylor series

`(θ) ≈ `(θ̂)− `′(θ̂)
(
θ − θ̂

)
− 1

2

[
−`′′(θ̂)

] (
θ − θ̂

)2
= `(θ̂)− 1

2
IO1(θ̂)

(
θ − θ̂

)2
.

This implies that

L(θ) ≈ K · exp

{
−1

2
IO1(θ̂)

(
θ − θ̂

)2}
,

which corresponds to the likelihood of obtaining a single observation θ̂ from the
distribution in (A.1).

Secondly, the (Wilk’s) LRT statistic is

2 log
`(θ̂)

`(θ)
= IO1(θ̂) ·

(
θ̂ − θ

)2 D−→ χ2
1.

Thus a LRT is possible based on this to test H0 : θ = θ0 versus H1 : θ 6= θ0. This
justifies the ‘vertical distance’ mentioned regarding Figure A.2.
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A.1.2 More on Probabilities

For some sequence of real numbers an, we write Xn = op(an) if Xn/an converges
in probability to 0.

In (A.33) we defined what it meant by Xn = Op(an). This is said to be stochas-
tically bounded because Xn/an cannot grow arbitrarily large in magnitude. Here
are some consequences.

� If Xn
D−→ X then Xn = Op(1).

� If Xn
P−→ a then Xn = a + op(1). Alternatively, one could write Xn = Op(1),

however this is less informative.

Based on these definitions, Slutsky’s Theorem states the following results for a

random variable Yn
D−→ Y and Xn

P−→ a.

�

Yn +Xn
D−→ Y + a.

�

YnXn
D−→ a · Y.

� If a 6= 0 then
Yn
Xn

D−→ Y

a
.

A.2 On Some More Special Functions

A.2.1 Lambert W Function

The Lambert W function is the root of the equation

W (z) eW (z) = z (A.2)

for complex z. It is multi-valued if z is real and z < −1/e. For real −1/e ≤ z < 0
it has two possible real values, and currently only the upper branch is computed.
The function lambertW() computes W , and further details are at Corless et al.
(1996). Its use is for the Makeham distribution. See also Goerg (2011, 2014).

A.2.2 The Lerch Φ Function

The VGAM package includes lerch() for computing the Lerch transcendental
function

Φ(x, s, v) =

∞∑
n=0

xn

(n+ v)s
. (A.3)

This can be written (see Erdélyi, 1981, eqn 3, p.27)
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Φ(x, s, v) =
1

Γ (s)

∫ ∞
0

ts−1 exp(−vt)
1− z exp(−t)

dt (A.4)

for |z| < 1 and for v 6= 0,−1,−2, . . ..
We have

> args(lerch)

function (x, s, v, tolerance = 1e-10, iter = 100)

NULL

Some special cases of the Lerch function include: ζ(s) = Φ(1, s, 1), 2F1 = Φ(·, s =
1, ·).

A.2.3 The Hurwitz Zeta Function

The Hurwitz ζ function is defined for complex arguments and is

ζ(s, q) =

∞∑
n=0

(n+ q)−s, <(s) > 1, (A.5)

with <(q) > 0. Hence ζ(s, 1) is the Riemann zeta function (A.56). Because its
computation is also amenable to the Euler-Maclaurin series (Johansson, 2015), it
is computed by zeta() in VGAM.

For a positive integer m, the mth derivative of the polygamma function is

ψ(m)(z) = (−1)m+1m! ζ(m+ 1, z),

e.g., ψ′(z) = ζ(2, z) for the trigamma function (Section A.4.1). The Hurwitz zeta
function is a special case of the Lerch function (A.3): Φ(x = 1, s, v) = ζ(s, v).

This special function can be used to define generalizations of the ordinary zeta
and Zipf distributions. For example, Moreno-Sánchez et al. (2016) consider a ran-
dom variable defined on a(1)∞ based on ζ(s, a)—although usually a = 1 it is not
always so with word-studies data.

A.2.4 Bernoulli Numbers and Polynomials

Bernoulli numbers are Bn = Bn(0) where the Bernoulli polynomials are defined
by

t ext

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π. (A.6)

We have B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30,
B10 = 5/66, B12 = −691/2730, B14 = 7/6, B16 = −3617/510, B18 = 43867/798,
B20 = −174611/330, as the first few Bernoulli numbers, with B2n+1 = 0 for n =
1(1)∞. The Riemann zeta function can be expressed in terms of an infinite series
involving Bernoulli numbers.
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The first few Bernoulli polynomials are

B0(x) = 1,

B1(x) = −1

2
+ x,

B2(x) =
1

6
− x+ x2,

B3(x) =
1

2
x− 3

2
x2 + x3.

Some properties are:

m∑
k=1

kn =
Bn+1(m+ 1)−Bn+1

n+ 1
, m, n = 1(1)∞, (A.7)∫ x

a

Bn(t) dt =
Bn+1(x)−Bn+1(a)

n+ 1
, n = 1(1)∞, (A.8)∫ 1

0

Bm(t)Bn(t) dt = (−1)n−1
m! n! Bm+n

(m+ n)!
, m, n = 1(1)∞, (A.9)

B′n(x) = nBn−1(x) for n = 1(1)∞, Bn(1 − x) = (−1)nBn(x) for n = 0(1)∞. It
follows from (A.9) that Bernoulli polynomials are orthogonal on [0, 1] for oddm+n.
Other properties can be found in Abramowitz and Stegun (1964, Chap. 23) and
Olver et al. (2010, Chap. 24).

A.2.5 Euler-Maclaurin Summation Formula

Suppose that f ∈ C2m[a, b], bxc is the floor function, Br are the Bernoulli numbers,
and Bn(x) are the Bernoulli polynomials. Then

b−1∑
k=a

f(k) =

∫ b

a

f(x) dx− 1

2
{f (b)− f (a)}+

m∑
r=1

B2r

(2r)!

{
f (2r−1)(b)− f (2r−1)(a)

}
+R2m (A.10)

where

R2m =
−1

(2m)!

∫ b

a

B2m(x− bxc) f (2m)(x) dx

= (−1)m 2

∫ b

a

{ ∞∑
s=1

cos(2πsx)

(2πs)2m

}
f (2m)(x) dx.

The remainder R2m = O(1/(2m)!), therefore it is considered negligible for some
sufficiently large value of m.
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A.3 Some More Series Expansions

For p 6= 1,

1 + p+ p2 + · · ·+ pn−1 =
1− pn

1− p

is a geometric series. And the algebraic series

n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4
.

Exercises

There are no big prob-

lems, there are just a lot

of little problems.

—Henry Ford

Ex. A.1. CDF and Expected Value
Suppose that a random variable Y has support on a(1)∞ and has a log(y + α)
term in its log-likelihood, where 0 < α <∞.

(a) Show that its EIM involves calculating

ψ′(a+ α)− E[ψ′(Y + α)] (= A∞, say). (A.11)

(b) Show that

A∞ =

∞∑
y=a

Pr(Y ≥ y + 1)

(y + α)2
. (A.12)

(c) † Suppose we approximate (A.12) by a finite sum:

AU ≡
U−1∑
y=a

Pr(Y ≥ y + 1)

(y + α)2
≈ A∞, (A.13)

for some suitable upperbound U . How might U be chosen?

Ex. A.2. Digamma Difference
Apply the Euler-Maclaurin summation formula to ψ(y + k)− ψ(k), a term in the
log-likelihood of the negative binomial distribution. Under what conditions would
the approximation be accurate? Can it avoid catastrophic cancellation?
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