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Preface

This document gives the figures from Yee (2015), along with their captions. There
are slight differences between these figures and in the book, due to edits by
Springer. I retain the copyright for all these figures. They can be used for pri-
vate study and teaching, but cannot be used in publications without my written
consent.

Thomas Yee
Auckland, New Zealand

November 2015

Some, imagining they can best commend themselves to the Eternal by means
of statues, are eagerly desirous of them, as if they were certain to obtain more
reward from brazen figures unendowed with sense, than from the conscious-
ness of duties honourably and uprightly performed.
—Ammianus Marcellinus
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ν

µ

A B
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Fig. 1.1 Rank-1 constrained quadratic ordination (CQO). (a) The mean abundance is µs(ν) =
E(Ys|ν) for s = 1, . . . , S species, and ν = cTx2 is a latent variable. (b) Zooming in on the

subinterval [A,B] in (a). This is approximately linearly on the η scale, meaning a RR-VGLM

would be suitable.
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LM

RR−VGLM

RR−VLM

VLM

VGLM VGAM

VAM

Generalized

Normal errors

Linear Smooth

RCIM
QRR−VGLM (CQO) / UQO

RR−VGAM (CAO)

Fig. 1.2 Flowchart for different classes of models. Legend: LM = linear model, V = vector,
G = generalized, A = additive, O = ordination, Q = quadratic, U = unconstrained, RCIM =

row–column interaction model. See also Table 1.1. Apart from the LM, the models of the bottom

half are more to be viewed as computational building blocks.
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Fig. 1.3 Paths of the estimated LASSO coefficients in a LM fit. The response log(los) is

regressed against the variables admit (black), age75 (red), procedure (green) and sex (blue)

and intercept, in the data frame azpro from COUNT. The first plot has log λ as its x-axis,
whereas second plot has the quantity

∑p
k=2 |βk| in (1.43). The upper numbers are the number

of variables in the model. Package glmnet is used here.
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Fig. 1.4 Some functional forms derived from the S formula language based on elementary
functions and operators. The formula heads each plot, followed by footnotes. The number of

parameters in the regression is given. An intercept term is assumed in all—and the blue •
point indicates its value at the location x = x0. Plots (k)–(l) are contour images with various
colours denoting different fitted values (blue for the intercept). The value x0 = x0 = 0.4 here,

and variables x, x2 and x3 are defined on the unit interval. Function bs() resides in the splines
package.
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Fig. 2.1 Properties of some common link functions gj suitable for a probability. (a) gj(p);

(b) g′j(p); (c) g′′j (p); (d) g−1
j (p). The legend in (a) is common for all plots. The calls to (a)–(c)

are of the form link.function(p, deriv = d) for d = 0, 1 and 2 (Table 1.2).
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Fig. 2.2 Wald (orange) and likelihood ratio test (blue) statistics plotted against p2, for:

(a) p1 = 0.5, (b) p1 = 0.25 (vertical dashed lines). Actually, the Wald statistic here is the

square of the usual Wald statistic, and p2 = 0.01(0.01)0.99 is discrete. The data follows Hauck
and Donner (1977).
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Fig. 2.3 Completely separable data (blue
circles). Adding the two orange hollow points

results in quasi-completely separable data.

The logistic regression estimate of the slope
will tend to infinity in both cases.
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Fig. 2.4 Polynomials of degree 1–4 fitted to two data sets. (a) mcycles from MASS. (b) cars

from datasets.

Vector Generalized Linear and Additive Models: With an Implementation in R



c© T. W. Yee, 2015. Chap. 02

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

74 76 78 80 82 84 86 88

0.6

0.7

0.8

0.9

1.0
(a)

ra
in

bo
w

/to
ta

l.f
is

h

Year

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

74 76 78 80 82 84 86 88

0.6

0.7

0.8

0.9

1.0
(b)

ra
in

bo
w

/to
ta

l.f
is

h

Year

Fig. 2.5 (a) Proportion of fish caught that are rainbow trout from Lake Otamangakau (lakeO)

caught by an angler who frequented the spot. The variable Year is year-1900. (b) Smoothing

the same data with a cubic regression spline (truncated power basis) with one knot located at
the year 1980. A boundary effect on the RHS is evident.
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Fig. 2.6 Smoothing some
data with a regression spline

(B-spline). Each segment

of the spline is coloured
differently. The term is effec-

tively bs(x, knots = c(1,

3.08, 6.03)). The true
function is the sine function

(dashed) and n = 50.
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Fig. 2.7 Truncated power series

basis for cubic splines (2.39) The
black dashed lines are 1, x, x2, x3.

The coloured solid lines are (x −
ξk)3+ for knots ξ1 = 1, ξ2 = 2, ξ3 =

3, ξ4 = 4 and ξ5 = 5.
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Fig. 2.8 B-splines of order 1–4 ((a)–(d)), where the interior knots are denoted by vertical lines.

The boundary knots are at 0 and 11. The basis functions have been plotted from left to right.
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Fig. 2.9 Smoothing some data with cubic regression splines with knots of varying multiplicities.

The knots are at x = 2 and 4.
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Fig. 2.10 (a)–(d) Linear combinations of B-splines of degrees 0–3 fitted to some scatter plot
data; the formula is similar to (2.55) The knots are equally-spaced on the unit interval.
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Fig. 2.11 (a) Cubic smoothing spline fitted to the proportion of fish caught that are rainbow

trout from lakeO. The x-axis is year. The smoother has 1 nonlinear degrees of freedom. (b)–

(d) Derivatives of the smooth of orders 1–3. In contrast, Fig. 2.15 fits a local linear regression to
these data.

Vector Generalized Linear and Additive Models: With an Implementation in R



c© T. W. Yee, 2015. Chap. 02

Fig. 2.12 O-splines:
number of knots K se-

lected from n unique xi,

for smooth.spline() is
the top function. The

lower function is (2.56)

for vsmooth.spline().
Both axes are on a

logarithmic scale. The

top function intersects
with the dashed lines

at (50, 50), (200, 100),

(800, 140) and (3200, 200);
logarithmic interpolation

is used for other n values.
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function. (b) f̂ ′(x). In contrast, Fig. 2.11 fits a cubic smoothing spline to these data.
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the bandwidth is 0.2. The kernel function K = φ(·).
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Fig. 2.17 (a) Eigenvalues of the smoother matrix of a cubic smoothing spline. Here, n =

20 and the xi are equidistant on [0, 1]. (b) The same on a logarithmic scale. The two unit
eigenvalues correspond to constant and linear functions. The corresponding eigenvectors are

plotted in Fig. 2.18.

Vector Generalized Linear and Additive Models: With an Implementation in R



c© T. W. Yee, 2015. Chap. 02

E
ig

en
ve

ct
or

−0.4

−0.2

0.0

0.2

0.4
Eigenvector 1

5 10 15 20

Eigenvector 2 Eigenvector 3

5 10 15 20

Eigenvector 4 Eigenvector 5

Eigenvector 6 Eigenvector 7 Eigenvector 8 Eigenvector 9

−0.4

−0.2

0.0

0.2

0.4
Eigenvector 10

−0.4

−0.2

0.0

0.2

0.4
Eigenvector 11Eigenvector 12Eigenvector 13Eigenvector 14Eigenvector 15

5 10 15 20

Eigenvector 16Eigenvector 17

5 10 15 20

Eigenvector 18Eigenvector 19

5 10 15 20

−0.4

−0.2

0.0

0.2

0.4
Eigenvector 20

Fig. 2.18 Successive eigenvectors corresponding to the eigenvalues of Fig. 2.17.
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Fig. 2.19 Equivalent kernel of a
cubic spline, κ(u) (Eq. (2.92)) −5 0 5
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Fig. 2.20 Fitted values from some logistic regression models applied to chinese.nz. The re-
sponse is the proportion of New Zealand Chinese who are female. The terms are year, poly(year,

2), bs(year, 4). Area sizes of the points are proportional to the number of people.
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Fig. 2.21 Four residual types for the regression spline fit of Fig. 2.20. The fitted values are

plotted on the x-axis.
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Fig. 3.1 An extension of the

fitted model fit.travel from
Sect. 14.2.1, where the cost vari-

able is smoothed with regression

splines. The variable gcost stands
for ‘generalized cost’.
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Fig. 3.2 Log-likelihood ` as a function of (i) µ and (ii) η = logitµ, for the V1 data frame. The

model is a logistic regression with 3 or more hits defining ‘success’. The vertical dashed lines are

at the MLE µ̂. The dashed curves are the quadratic approximation to ` at µ̂.
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Fig. 3.3 Hat values from a proportional odds model fitted to the severity of pneumoconiosis
data set in coalminers, called pneumo.

Vector Generalized Linear and Additive Models: With an Implementation in R



Chapter 4

Figures from Vector Generalized Linear
and Additive Models: With an
Implementation in R
c© T. W. Yee, 2015

33



c© T. W. Yee, 2015. Chap. 04

●
●
●

●
●●

●

●●
●●

●

●●

●
●

●
●●

●
●

●

●

●
●
●●●●●

●●
●

●

●

●

●

●

● ●●●

●●

●

●

●

●●●
●

●
●

●

●●
●●

●

●
●

●

●
●

●

●

●

●●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●
●●

●●

●

●

●

●

●

●

●

●
●

30 40 50 60 70

60

80

100

120

140

160

Age

B
lo

od
 p

re
ss

ur
e

(a)

●
●
●

●
●●

●

●●
●●

●

●●

●
●

●
●●

●
●

●

●

●
●
●●●●●

●●
●

●

●

●

●

●

● ●●●

●●

●

●

●

●●●
●

●
●

●

●●
●●

●

●
●

●

●
●

●

●

●

●●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●
●●

●●

●

●

●

●

●

●

●

●
●

30 40 50 60 70

60

80

100

120

140

160 (b)

Fig. 4.1 (a) Scatter plot of diastolic (◦) and systolic (×) blood pressures (mm Hg) versus

age, for a random sample of 100 European-type females from xs.nz. (b) A vector smoothing

spline fit overlaid on the same. Each component function has 2 effective nonlinear degrees of
freedom (ENDF).
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Fig. 4.2 (a) Data used from (4.6). The black curves are the true functions; (b)–(f) Equivalent

kernels based on (4.6) for various values of ρ. The row of the influence matrix corresponds

to f̂1(x = 0), and is midway between the boundaries.
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Fig. 4.3 O-

smoothing spline

(blue curve) fitted
to scatter plot

data •, which is

equal to a least
squares fit (black

line) plus the
sum of individual

B-spline basis func-

tions; cf. Fig. 2.8.
It corresponds to

the decomposi-

tion (4.12). The
rugplot denotes the

position of the xi.
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Fig. 4.4 A bivariate odds ratio model fitted as a VGAM to a subset of female Europeans

from xs.nz, with household cat and dog ownership as the responses. The plots are the f̂(j)2(x2).
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Fig. 4.6 The first three plots are the fitted component functions overlaid; the models
are fit1.cd are fit3.cd. The fourth plot is the estimated log odds ratios of fit3.cd.
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Fig. 5.1 (a) RR-VGLM-binomial model applied to several disease responses. The x-axis is ν̂, a

linear combination of 11 binary psychological variables. The y-axis is disease prevalence. (b) The
same on a log scale.
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Fig. 5.2 Monthly average prices of Grain series, January 1961–October 1972, in data
frame grain.us.
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Fig. 5.3 Canonical variables of the Grain Price series, January 1961–October 1972.
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Fig. 5.4 Mosaic plot of alcoff; the area sizes are proportional to the counts.
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Fig. 5.5 Hourly and effective daily effects of a rank-0 Goodman’s RC model fitted to alcoff.
This is output from plot(grc0.alcoff).
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Fig. 5.6 Rasch fixed effects model to exam1, Eq. (5.29). Only a few people and items are
labelled.
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Fig. 5.7 Quasi-variances computed for the ships data in MASS. The fitted model is a quasi-

Poisson-GLM fitted to the ship data (McCullagh & Nelder, 1989) with respect to ship types (A–E)
on the damage rate on a log scale. (a) Confidence intervals for contrasts with type A ships based

on conventional standard errors; (b) Comparison intervals based on quasi-variances; (c) 5% LSD

intervals (arrows) based on quasi-variances overlaid on (b). For (a)–(c), the formulas are β̂i ±
2 SE(β̂i), β̂i ± 2

√
qi and β̂i ± z(0.025)

√
qi/2, respectively.
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(b) Individualistic continuum

(c) Resource niche

E
(Y
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(d) Independent strata with resource niches

Fig. 6.1 Four hypothetical models for community ecology, along a gradient or latent variable.
Plot (c) corresponds to a species packing model.
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Fig. 6.2 Ordination of 11 species from the hspider data frame; a Poisson model with unequal
tolerances, called p1ut.hs.2. (a) lvplot() output. (b) persp() output, which is a perspective
plot and a ‘continuous’ version of (a).
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Fig. 6.3 Ordination of 12 species from the hspider data frame; a Poisson model with equal
tolerances, called p1et.hs. (a) lvplot() output. (b) persp() output, which is a perspective plot
and a ‘continuous’ version of (a).
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Fig. 6.4 Perspective plot of a rank-2 CQO fitted to the hspider data frame, called p2et.hs.
All 12 species are fitted, using an equal-tolerances Poisson model, but only the response surfaces

of the dominant species may be seen. See also Fig. 6.6 for an ordination diagram of the above.
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Fig. 6.5 The effect of the argument isd.latvar on the site scores. All response curves have
unit tolerances (because Ts = IR ∀s), and the optimums are located the same relative distance

from each other. The site scores are uniformly distributed over the latent variable space, and have

been scaled to have a standard deviation isd.latvar. The tick marks are at the same values.
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Fig. 6.6 Ordination diagrams of 12 species from the hspider data frame; the Poisson

model p2et.hs with equal tolerances. A convex hull surrounds the site scores. In (a), the circles

indicate the abundance of each species at 95% of its maximum abundance. In (b), the arrows
display the contribution of each environmental variable towards each of the ordination axes.
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Fig. 6.7 Trajectory plot of three hunting spiders species. A rank-1 Poisson CQO is fitted to

these. Site numbers have been placed on each curve.
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Fig. 6.8 Two calibrated sites from a rank-1 equal-tolerances Poisson QRR-VGLM fitted to the

hunting spiders data without those 2 sites. The thick vertical lines are the CQO sites scores ν̂i,

and the thinner vertical lines are the calibrated sites scores ν̃i. Each i has the same colour and
line type.
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Fig. 6.9 Perspective

plot of an unequal-

tolerances Poisson
CQO model fitted to

the trapO trout data.

Legend: “B” = brown
trout, “R” = rainbow

trout, “F” = female,
“M” = male. The trap

was located at the Te

Whaiau Trap, hence
the “TW”. The BFTW

response curve has unit

tolerance.
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Fig. 6.10 (a)–(b) compares the UQO solution with the truth for a rank-1 Poisson simulated
data set. (a) Estimated optimums ûj versus uj . (b) Estimated site scores ν̂i versus νi. (c) CQO

fitted to the original data. (d) CQO fitted to the scaled UQO site scores. In (a)–(b) the dashed
orange line is a simple linear regression through the points.
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Fig. 7.1 Estimated (uncentred) component functions of p1cao.hs, a rank-1 Poisson RR-VGAM

fitted to the hspider data. The x-axis is ν̂.

Vector Generalized Linear and Additive Models: With an Implementation in R



c© T. W. Yee, 2015. Chap. 07

Fig. 7.2 Perspective

plot of a rank-1 Poisson

RR-VGAM fitted to
the trapO data. The

latent variable of this

CAO, which is pre-
dominantly the day

of the year, has unit
variance. The responses

are combinations of

male and female rain-
bow and brown trout,

all captured at the

Te Whaiau Trap of Lake
Otamangakau. See also

Fig. 6.9.
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Fig. 7.3 Component functions (uncentred) of a rank-1 binomial RR-VGAM fitted to a subset of
the xs.nz data. The latent variable of this CAO is a linear combination of 11 binary psychological

variables.
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Fig. 7.4 Top row: component functions (centred) of a rank-1 binomial RR-VGAM fitted to a

subset of the xs.nz data, cf. Fig. 7.3. The latent variable of this CAO is a linear combination of 11
binary psychological variables. Bottom row: first derivatives of the respective fitted functions.
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Fig. 8.1 Response yi (×) in

a simple linear regression, with
shrinkage initial values (•) based

on s = 1
2

in (8.5). The dashed hor-
izontal line is at y, and s is argu-
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Fig. 8.2 Fitted logistic regression VGAM (the response is nofriend) to European-type people
in xs.nz with (a) noxmean = FALSE, (b) noxmean = TRUE. In (a), the point A, which has 0 as its

SE, has been explictly added to the plot, whereas it has been omitted in (b). The x-coordinate

of A is at the mean of the variable sex01. The y-coordinate is 0 because component functions
are centred.
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Fig. 9.1 Fitted curves for three binary regression models fitted to completely-separable data,
with n = 20. A grey vertical line at x2 = 0 is plotted. If there were an additional two points

at (0, 0) and (0, 1) then the data would have quasi-complete separation.
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Fig. 10.1 (a)–(b) Scatter plots of the ethanol data stratified by C and E respectively. In (a) C

has been split into low, medium and high subgroups. In (b) E has been split into three similar

subgroups—see Fig. 10.2 for an expansion. Plots (c)–(d) are the estimated (centred) component

functions of the VCM (10.5) where both the intercept and slope are a smoothing spline of the

variable E. The dashed lines are pointwise ±2 SEs about the β̂j(E). The points about the curves

are the working residuals.
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Fig. 10.2 Expansion of Fig. 10.1(b) with a least squares line added to each subset.
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Fig. 10.3 Tobit model fitted to some simulated data. This mimics the type of problem moti-

vating Tobin (1958), viz. spending is non-negative, and is linear beyond a certain income. Values

of zero are plotted with a different colour and symbol for clarity. (a) The purple dashed line is
a näıve fit that treats all values as if they were ‘real’. The estimate and the truth are similar.

(b) The 3 types of fitted values currently distinguished by the argument type.fitted.
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Fig. 10.4 Smooths of a SUR model applied to the gew data. The fitted model is called fit.rs.
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Fig. 11.1 Acceptance-rejection method for generating random variates. The solid blue points
are accepted; the hollow orange points are rejected. (a) The density g = dunif() is used to

generate Beta(2, 4) random variates. The vertical line at y = 0.25 denotes the position of the

mode, thus defining C = f(0.25). (b) A Kumaraswamy(3, 4) density (f ; blue) is overshadowed
by a scaled Beta(3, 2) density (C · g(y); purple dashed); the scaling constant is C = 1.5.
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Fig. 11.2 Contour plot of qnbinom(0.995, size = size, mu = mu), where µ and k are on
a log-scale. Regions of the (µ, k)-space with a value less than 1000, say, might have the EIM

computed by the exact method (11.5). Some of the contour levels appear jagged due to the

discrete nature of qnbinom().
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Fig. 11.4 Standard deviation, SD(Y ∗i ), in the beta-binomial distribution, from (11.13)

with Ni = 10. (a) As a function of µ, for ρ = 0.33 (blue), ρ = 0.67 (green) and ρ = 0 (or-

ange dashed). (b) As a function of ρ, where µi = 0.5.
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Fig. 12.1 Log-likelihood `(a) as a function of the location parameter, for a random sample of

size 10 from a standard Cauchy distribution. The dashed vertical line denotes â, and the purple ×
denotes the data.
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Fig. 12.2 QQ-plots of 2 simulated data sets. A Birnbaum-Saunders distribution is fitted to both.
(a)–(b) Data from a Birnbaum-Saunders distribution; (c)–(d) data from a Fréchet distribution.

Plots (a) and (c) are based on the q-type function, and both axes are on a log-scale. Plots (b)

and (d) use the p-type function. A x = y line appears in all plots.
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Fig. 12.3 The 2-parameter gamma distribution (12.10). (a) SE(̂b) are the solid curves, for
various values of the scale parameter b given in the legend of (b). The purple dashed line is SE(ŝ).

(b) The same with both axes on a log-scale. (c) The densities with shape parameters s = e0 (solid

lines) and e1 (dashed). (d) The same as (c) with one axis on a log-scale.

Vector Generalized Linear and Additive Models: With an Implementation in R



Chapter 13

Figures from Vector Generalized Linear
and Additive Models: With an
Implementation in R
c© T. W. Yee, 2015

89



c© T. W. Yee, 2015. Chap. 13

● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●●

●

●

●
●

● ●
●

●

●

●

●

● ●
●

● ●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

● ●●

●
●●

●

●

●
●

●

●

●

● ●

●
●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −1 1 3

−3
−2
−1

0
1
2
3

ρ = −0.5

y1

y 2

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●● ●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●●

● ●

●

●

●
●

●
●

●

●

−3 −1 1 3

−3
−2
−1

0
1
2
3

ρ = 0

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●●

●

●●

●

●

●
●●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●●

●

●
●

●

●●

● ●

●
●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −1 1 3

−3
−2
−1

0
1
2
3

ρ = 0.9
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Fig. 13.2 Fitted (centred) component functions of a VGAM N2 fitted to diastolic and systolic

blood pressures data, versus age. The data set are 5649 male Europeans from xs.nz. From left

to right, those for µ̂1 and µ̂2, those for log σ̂1 and log σ̂2, those for log((1 + ρ̂)/(1− ρ̂)).

Vector Generalized Linear and Additive Models: With an Implementation in R



c© T. W. Yee, 2015. Chap. 13

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

y1

y 2

(a) ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

y1

(b)

Fig. 13.3 500 random vectors generated from two copulas. (a) Bivariate Gaussian copula
with α = ρ = 0.8. (b) Bivariate Frank copula with α = 50.
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Fig. 14.2 Latent vari-

able Y ′ interpretation

for the cumulative logit
model. Here, β(j)1 are

thresholds or cutoff
points so that Pr(Y ≤
j|x) = Pr(Y ′ ≤ β(j)1).

Then pj = Pr(Y = j|x).
The distribution is a

logistic (see (14.18)).
Y'β(1)1 β(2)1 β(3)1 β(4)1

p1 p2 p3 p4 p5
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Johnson transformation ψ(λ, y).
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Fig. 15.2 Hexagonal binning plot of BMI versus age for European-type women in xs.nz.
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Fig. 15.3 Plot of the VGAM component functions of w0.LMS0, a lms.bcn() fit of BMI versus age

for European-type women in the xs.nz data frame. These are (centred) λ̂(x), µ̂(x), log σ̂(x).

Vector Generalized Linear and Additive Models: With an Implementation in R



c© T. W. Yee, 2015. Chap. 15

20 40 60 80 100

15
20

25
30

35
40

45

age

B
M

I

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●● ●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●
● ●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●
●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●
●

●●

●

●
●

●

●
●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●●

●●

●● ●

●

● ●

●

●
●

●
●●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●●
●

●●
● ● ●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

● ●

●

●
●

●

● ●●
●

●●

●

●●

●● ●

●

●

●● ●●

●●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●●
●

● ●

●

● ●
●

●

●
●

●

●●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●●

●

●●
●●

●

●

●
●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

● ●●

●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●
●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●
●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●
●

●

●

●

●●

●●

●
●

●
●

●

●

●

●
●

●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●●●●

● ●

●
●

●

●●●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●
● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●
●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●●

●

● ●
●

●●

●

●●
●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●
●●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●
●●

●

●

● ●

●

●

●

● ●

●● ●

● ●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

● ●
●

● ●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

● ●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●
● ●

●

●

● ●

●
●

●

●

●

●
●

●● ●
●●

●

●

●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●
●

●

●

●

●

●●

●

●● ●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●
●● ● ●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●●

●
●

●

●
●

●

●

●

●
●

●●
●

●

●

●

● ●

●

● ●
●

●

●

●●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
● ●

●

● ●

●

●

●
●

●
●●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●●

●●

●●

●

●

●

●

●

●
●
●
●

●

●

●●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●● ●●

●

●
●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

● ●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
● ●● ●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●●
●

●●●
●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

● ●

●●

● ●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

● ●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●
●

●

●

●

●●

● ●

●

●
●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●●

●

●

●● ●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

● ●
●

●

●
●● ●●

●

●

●

●
●

●
●

●

● ●

● ●
●

●

●
●

●

●●
●

●

●

●

●
●

● ●

●

●
● ●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

5%
25%
50%
75%

95%

(a)

15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

BMI

de
ns

ity 20
30

(b)

Fig. 15.4 (a) Quantile and (b) density plots of w0.LMS. In (b) the estimated densities are for 20

and 30 year olds, and the vertical lines denote an approximate healthy range.
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Fig. 15.5 Output of qtplot() when there are non-primary variables. The two groups are

European and Pacific island women. The fitted 50-percentiles differ by a constant.
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Fig. 15.6 Loss functions for: (a) quantile regression with τ = 0.5 (L1 regression) and τ = 0.9;

(b) expectile regression with ω = 0.5 (least squares) and ω = 0.9. Note: (a) is also known as the

asymmetric absolute loss function or pinball loss function.
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Fig. 15.7 (a) Scatter plot of simulated Poisson counts (15.19). The points have been jittered

slightly. (b) Fitted L∗(ξ = exp{β∗
(s)1

+ f∗
(s)2

(xi2)}, σ = 1, τ = ( 1
4
, 3
4

)T ) model to the data. The

smooth curves are the fitted τ = 0.25 and 0.75 quantiles from a vector smoothing spline fit. The

step functions are the output from qpois() at the corresponding τ values. The actual sample
proportions lying below the curves are 35.2 and 79.6 percent. See also Fig. 15.8(b).
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Fig. 15.8 (a) Fitted functions f̂(s)2(xi2) in (15.20) overlaid, with pointwise ±2 SE bands.

(b) Same as Fig. 15.7(b) except the quantiles (purple curves) are constrained to be parallel on

the η-scale (log scale here). The actual sample proportion lying below the curves are 36.4 and 78.4
percent.
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Fig. 15.9 (a) Quantile plot from the onion method applied to some simulated Poisson data.

The quantiles are positive, nonparallel and noncrossing. Here, τ has values 0.2(0.1)0.9. (b) A

zoom-in view of the LHS of (a).

Then Fig. 15.9(a) was produced by

Vector Generalized Linear and Additive Models: With an Implementation in R



c© T. W. Yee, 2015. Chap. 15

−4 −2 0 2 4

0.0
0.1
0.2
0.3
0.4
0.5
0.6 (a) Normal

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0 (b) Uniform

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0 (c) Exponential (d)
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c1 c2

Fig. 15.10 (a)–(c) Density plots of expectile derived g (orange solid lines; (15.30)) for the
original f of standard normal, standard uniform and standard exponential distributions (blue

dashed lines). (d) Illustration of the interpretation of expectiles in terms of centres of balance,

the hollow triangles at positions c1 and c2. Here, the vertical dashed line is at the 0.1-expectile,
the solid triangle at µ(ω = 0.1), which means that (15.33) is satisfied with ω = 0.1.
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Fig. 15.11 ‘Quantile’ plot from amlnormal() applied to women.eth0: 5, 25, 50, 75, 95 ‘percentile’

curves. Each regression curve is a regression spline with 3 degrees of freedom (1 = linear fit).
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under the expectile curves. The response has been jitted to aid clarity.
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Fig. 15.13 (a) Melbourne maximum temperature data, called melbmaxtemp, in ◦C. (b) Onion

method using amlnormal() expectiles applied to the data with an assortment of wj values. The

sample proportions below the curves are 1, 4.8, 20.2, 54.9, 65.2, 74.8, 82.7, 88.2, 91.7, 94.8 percent.
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Fig. 16.1 GEV densities for values µ = 0, σ = 1, and ξ = − 1
3

, 0, 1
3

(Weibull-, Gumbel- and
Fréchet-types respectively). The orange curve is the CDF, the dashed purple segments divide the

density into areas of 1
10

. The bottom RHS plot has the densities overlaid.
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Fig. 16.2 GPD densities for values µ = 0, σ = 1, and ξ = − 1
3

, 0, 1
3

(beta-, exponential- and
Pareto-types, respectively). The orange curve is the CDF, the dashed purple segments divide the

density into areas of 1
10

. The bottom RHS plot has the densities overlaid.
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Fig. 16.3 Gumbel plot of the two highest annual sea levels of the Venice data (venice).
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Fig. 16.4 Intercept-only GEV model fitted to the portpirie annual maximum sea levels
data. (a) Scatter plot, and the dashed horizontal lines are the resulting 95% and 99% quan-
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Fig. 16.5 VGAM fitted to the Venice sea level data (fit1).
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Fig. 16.6 (a) Quantile plot of the Venice sea level data (fit2). (b) Venice data overlaid with

the fitted values of fit3. This model underfits.
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Fig. 16.8 The rain daily rainfall data. (a) Scatter plot. (b) Mean excess plot.
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Fig. 16.9 Intercept-only GPD model fitted to the rain daily rainfall data. (a) Scatter plot,

with the solid black horizontal line denoting the threshold at 30. The dashed horizontal lines are
the resulting 90% and 99% quantiles. (b) Probability plot. (c) Quantile plot. (d) Density plot.
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ω

Y   | Y   > 0* * 00

Fig. 17.1 Decision tree diagram for (a) zero-alteration versus (b) zero-inflation. They de-

pict (17.4) and (17.7) respectively. Here, Y ∗ corresponds to a parent distribution such as the

binomial or Poisson, and Y is the response of interest. The probabilities ω and φ dictate the
decisions.
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Fig. 17.2 Probability functions of a (a) zero-inflated Poisson with φ = 0.2, (b) zero-deflated

Poisson with ω = −0.035. Both are compared to their parent distribution which is a Poisson(µ =
3) in orange.
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Fig. 17.3 Estimated component functions for the deermice VGAM.
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Fig. 17.4 Capture probability

estimates with approximate ±2
pointwise SEs, versus wing length

with (blue) and without (or-

ange) fat content present fitting
a Mh-VGAM, using the prinia

data.
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Fig. A.1 The first few Newton-like iterations for a Poisson regression fitted to the V1 data set.

The solid orange curve is `(θ) with θ = µ. The initial value is θ(1) = 0.2. Each iteration θ(a)

corresponds to the maximum of the quadratic (dashed curves) from the previous iteration.
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Fig. A.2 Negative binomial NB(µ, k) distribution fitted to the machinists data set. The y-axis

is `. Let θ = k and θ∗ = log k. (a) `(θ) is the solid blue curve. (b) `(θ∗) is the solid blue curve.
Note: for H0 : θ = θ0 (where θ0 = 1

3
), the likelihood-ratio test, score test and Wald test statistics

are based on quantities highlighted with respect to `. In particular, the score statistic is based

on the tangent `′(θ0).
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